Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Hortic Res ; 11(4): uhae043, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38623072

RESUMEN

Flavonols are a class of flavonoids that play a crucial role in regulating plant growth and promoting stress resistance. They are also important dietary components in horticultural crops due to their benefits for human health. In past decades, research on the transcriptional regulation of flavonol biosynthesis in plants has increased rapidly. This review summarizes recent progress in flavonol-specific transcriptional regulation in plants, encompassing characterization of different categories of transcription factors (TFs) and microRNAs as well as elucidation of different transcriptional mechanisms, including direct and cascade transcriptional regulation. Direct transcriptional regulation involves TFs, such as MYB, AP2/ERF, and WRKY, which can directly target the key flavonol synthase gene or other early genes in flavonoid biosynthesis. In addition, different regulation modules in cascade transcriptional regulation involve microRNAs targeting TFs, regulation between activators, interaction between activators and repressors, and degradation of activators or repressors induced by UV-B light or plant hormones. Such sophisticated regulation of the flavonol biosynthetic pathway in response to UV-B radiation or hormones may allow plants to fine-tune flavonol homeostasis, thereby balancing plant growth and stress responses in a timely manner. Based on orchestrated regulation, molecular design strategies will be applied to breed horticultural crops with excellent health-promoting effects and high resistance.

2.
Plant Physiol ; 195(1): 598-616, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38319742

RESUMEN

Chinese bayberry (Morella rubra) is a fruit tree with a remarkable variation in fruit color, ranging from white to dark red as determined by anthocyanin content. In dark red "Biqi" (BQ), red "Dongkui" (DK), pink "Fenhong" (FH), and white "Shuijing" (SJ), we identified an anthocyanin-related MYB transcription factor-encoding gene cluster of four members, i.e. MrMYB1.1, MrMYB1.2, MrMYB1.3, and MrMYB2. Collinear analysis revealed that the MYB tandem cluster may have occurred in a highly conserved region of many eudicot genomes. Two alleles of MrMYB1.1 were observed; MrMYB1.1-1 (MrMYB1.1n) was a full-length allele and homozygous in "BQ", MrMYB1.1-2 (MrMYB1.1d) was a nonfunctional allele with a single base deletion and homozygous in "SJ", and MrMYB1.1n/MrMYB1.1d were heterozygous in "DK" and "FH". In these four cultivars, expression of MrMYB1.1, MrMYB1.2, and MrMYB2 was enhanced during ripening. Both alleles were equally expressed in MrMYB1.1n/MrMYB1.1d heterozygous cultivars as revealed by a cleaved amplified polymorphic sequence marker. Expression of MrMYB1.3 was restricted to some dark red cultivars only. Functional characterization revealed that MrMYB1.1n and MrMYB1.3 can induce anthocyanin accumulation while MrMYB1.1d, MrMYB1.2, and MrMYB2 cannot. DNA-protein interaction assays indicated that MrMYB1.1n and MrMYB1.3 can directly bind to and activate the promoters of anthocyanin-related genes via interaction with a MYC-like basic helix-loop-helix protein MrbHLH1. We concluded that the specific genotype of MrMYB1.1 alleles, as well as the exclusive expression of MrMYB1.3 in some dark red cultivars, contributes to fruit color variation. The study provides insights into the mechanisms for regulation of plant anthocyanin accumulation by MYB tandem clusters.


Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Pigmentación , Proteínas de Plantas , Factores de Transcripción , Frutas/genética , Frutas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pigmentación/genética , Antocianinas/metabolismo , Filogenia , Alelos , Genes de Plantas , Datos de Secuencia Molecular , Secuencia de Aminoácidos , Color
3.
Front Plant Sci ; 14: 1285456, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37900735

RESUMEN

Eriobotrya is an evergreen fruit tree native to South-West China and adjacent countries. There are more than 26 loquat species known in this genus, while E. japonica is the only species yet domesticated to produce fresh fruits from late spring to early summer. Fruits of cultivated loquat are usually orange colored, in contrast to the red color of fruits of wild E. henryi (EH). However, the mechanisms of fruit pigment formation during loquat evolution are yet to be elucidated. To understand these, targeted carotenoid and anthocyanin metabolomics as well as transcriptomics analyses were carried out in this study. The results showed that ß-carotene, violaxanthin palmitate and rubixanthin laurate, totally accounted for over 60% of the colored carotenoids, were the major carotenoids in peel of the orange colored 'Jiefangzhong' (JFZ) fruits. Total carotenoids content in JFZ is about 10 times to that of EH, and the expression levels of PSY, ZDS and ZEP in JFZ were 10.69 to 23.26 folds to that in EH at ripen stage. Cyanidin-3-O-galactoside and pelargonidin-3-O-galactoside were the predominant anthocyanins enriched in EH peel. On the contrary, both of them were almost undetectable in JFZ, and the transcript levels of F3H, F3'H, ANS, CHS and CHI in EH were 4.39 to 73.12 folds higher than that in JFZ during fruit pigmentation. In summary, abundant carotenoid deposition in JFZ peel is well correlated with the strong expression of PSY, ZDS and ZEP, while the accumulation of anthocyanin metabolites in EH peel is tightly associated with the notably upregulated expressions of F3H, F3'H, ANS, CHS and CHI. This study was the first to demonstrate the metabolic background of how fruit pigmentations evolved from wild to cultivated loquat species, and provided gene targets for further breeding of more colorful loquat fruits via manipulation of carotenoids and anthocyanin biosynthesis.

4.
Plant J ; 115(2): 577-594, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37058123

RESUMEN

Flavonols are health-promoting bioactive compounds important for human nutrition, health, and plant defense. The transcriptional regulation of kaempferol and quercetin biosynthesis has been studied extensively, while little is known about the regulatory mechanisms underlying myricetin biosynthesis, which has strong antioxidant, anticancer, antidiabetic, and anti-inflammatory activities. In this study, the flavonol-specific MrMYB12 in Morella rubra preferred activating the promoter of flavonol synthase 2 (MrFLS2) (6.4-fold) rather than MrFLS1 (1.4-fold) and upregulated quercetin biosynthesis. Furthermore, two SG44 R2R3-MYB members, MrMYB5 and MrMYB5L, were identified by yeast one-hybrid library screening using the promoter of flavonoid 3',5'-hydroxylase (MrF3'5'H), and transcript levels of these R2R3-MYBs were correlated with accumulation of myricetin derivatives during leaf development. Dual-luciferase and electrophoretic mobility shift assays demonstrated that both MrMYB5 and MrMYB5L could bind directly to MYB recognition sequence elements in promoters of MrF3'5'H or MrFLS1 and activate their expression. Protein-protein interactions of MrMYB5 or MrMYB5L with MrbHLH2 were confirmed by yeast two-hybrid and bimolecular fluorescence complementation assays. MrMYB5L-MrbHLH2 showed much higher synergistic activation of MrF3'5'H or MrFLS1 promoters than MrMYB5-MrbHLH2. Studies with Arabidopsis thaliana homologs AtMYB5 and AtTT8 indicated that similar synergistic regulatory effects occur with promoters of MrF3'5'H or MrFLS1. Transient overexpression of MrMYB5L-MrbHLH2 in Nicotiana benthamiana induced a higher accumulation of myricetin derivatives (57.70 µg g-1 FW) than MrMYB5-MrbHLH2 (7.43 µg g-1 FW) when MrMYB12 was coexpressed with them. This study reveals a novel transcriptional mechanism regulating myricetin biosynthesis with the potential use for future metabolic engineering of health-promoting flavonols.


Asunto(s)
Arabidopsis , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Quercetina/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flavonoles/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Front Plant Sci ; 13: 998985, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36226286

RESUMEN

Glycosylation was catalyzed by UDP-glycosyltransferase (UGT) and was important for enriching diversity of flavonoids. Chinese bayberry (Morella rubra) has significant nutritional and medical values because of diverse natural flavonoid glycosides. However, information of UGT gene family was quite limited in M. rubra. In the present study, a total of 152 MrUGT genes clustered into 13 groups were identified in M. rubra genome. Among them, 139 MrUGT genes were marked on eight chromosomes and 13 members located on unmapped scaffolds. Gene duplication analysis indicated that expansion of MrUGT gene family was mainly forced by tandem and proximal duplication events. Gene expression patterns in different tissues and under UV-B treatment were analyzed by transcriptome. Cyanidin 3-O-glucoside (C3Glc) and quercetin 3-O-glucoside (Q3Glc) were two main flavonoid glucosides accumulated in M. rubra. UV-B treatment significantly induced C3Glc and Q3Glc accumulation in fruit. Based on comprehensively analysis of transcriptomic data and phylogenetic homology together with flavonoid accumulation patterns, MrUFGT (MrUGT78A26) and MrUGT72B67 were identified as UDP-glucosyltransferases. MrUFGT was mainly involved in C3Glc and Q3Glc accumulation in fruit, while MrUGT72B67 was mainly involved in Q3Glc accumulation in leaves and flowers. Gln375 and Gln391 were identified as important amino acids for glucosyl transfer activity of MrUFGT and MrUGT72B67 by site-directed mutagenesis, respectively. Transient expression in Nicotiana benthamiana tested the function of MrUFGT and MrUGT72B67 as glucosyltransferases. The present study provided valuable source for identification of functional UGTs involved in secondary metabolites biosynthesis in M. rubra.

6.
Hortic Res ; 9: uhac138, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36072838

RESUMEN

Flavonol glycosides are health-promoting phytochemicals important for human nutrition and plant defense against environmental stresses. Glycosylation modification greatly enriches the diversity of flavonols. Morella rubra, a member of the Myricaceae, contains high amounts of myricetin 3-O-rhamnoside (M3Rha), quercetin 3-O-rhamnoside (Q3Rha), and quercetin 3-O-galactoside (Q3Gal). In the present study, MrUGT78R1 and MrUGT78R2 were identified as two functional UDP-rhamnosyltransferases, while MrUGT78W1 was identified as a UDP-galactosyltransferase. Site-directed mutagenesis identified Pro143 and Asn386 as important residues for rhamnosyl transfer activity of MrUGT78R1, while the two corresponding positions in MrUGT78W1 (i.e. Ser147 and Asn370) also play important roles in galactosyl transfer activity. Transient expression data for these three MrUGTs in Nicotiana benthamiana tested the function of MrUGT78R1 and MrUGT78R2 as rhamnosyltransferases and MrUGT78W1 as a galactosyltransferase in glycosylation of flavonols. This work enriches knowledge of the diversity of UDP-rhamnosyltransferase in planta and identifies two amino acid positions important for both rhamnosyltransferase and galactosyltransferase.

7.
Front Plant Sci ; 13: 903333, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35755659

RESUMEN

Chinese bayberry (Morella rubra) is a fruit tree economically important in China and accumulates abundant amounts of anthocyanins in fruit as it ripens. Owing to the fact that all anthocyanin containing fruit tissues in Chinese bayberry are edible and anthocyanins can provide various health benefits in human body, the mechanisms underpinning anthocyanin accumulation in this fruit are worthy of investigation. It has been known that in plants anthocyanins are synthesized in the cytoplasmic surface of the endoplasmic reticulum and subsequently transported into the vacuole for storage, and glutathione S-transferases (GSTs) have been verified to be involved in this process. But the characterization and functionalization of the GST counterpart in Chinese bayberry is not available. The GST anthocyanin transporter MrGST1 was discovered to be related with anthocyanin accumulation in fruit from distinct developmental stages of "Biqi," a staple cultivar that accumulates over 1 mg/g anthocyanins in ripe fruit. The expression of MrGST1 was well associated with anthocyanin accumulation either in fruit collected at six developmental stages or in ripe fruit from 12 cultivars. MrGST1 was found to be responsible for the transport of anthocyanins but not proanthocyanidins when the Arabidopsis tt19 mutant was functionally complemented. Transient ectopic expression of MrGST1 in combination with MrMYB1.1 and MrbHLH1 dramatically boosted pigmentation in Nicotiana tabacum leaves in contrast to MrMYB1.1 and MrbHLH1. The promoter of MrGST1 comprised eight MYB binding sites (MBSs) according to cis-element analysis. Data from yeast one-hybrid assay and dual-luciferase tests demonstrated that MrMYB1.1 exerted considerable transactivation effect on the MrGST1 promoter by recognizing the MBS4, the fourth MBS from the ATG start site. Our results together provided molecular evidence for the contribution of MrGST1 in regulating anthocyanin accumulation in Chinese bayberry fruit.

8.
Oxid Med Cell Longev ; 2022: 9012943, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35498126

RESUMEN

Diabetes mellitus (DM) is a chronic disease characterized by hyperglycemia, and oxidative stress is an important cause and therapeutic target of DM. Phytochemicals such as flavonols are important natural antioxidants that can be used for prevention and treatment of DM. In the present study, six flavonols were precisely prepared and structurally elucidated from Morella rubra leaves, which were screened based on antioxidant assays and α-glucosidase inhibitory activities of different plant tissues. Myricetin-3-O-(2″-O-galloyl)-α-L-rhamnoside (2) and myricetin-3-O-(4″-O-galloyl)-α-L-rhamnoside (3) showed excellent α-glucosidase inhibitory effects with IC50 values of 1.32 and 1.77 µM, respectively, which were hundredfold higher than those of positive control acarbose. Molecular docking simulation illustrated that the presence of galloyl group altered the binding orientation of flavonols, where it occupied the opening of the cavity pocket of α-glucosidase along with Pi-anion interaction with Glu304 and Pi-Pi stacked with His279. Pi-conjugations generated between galloyl moiety and key residues at the active site of α-glucosidase reinforced the flavonol-enzyme binding, which might explain the greatly increased activity of compounds 2 and 3. In addition, 26 flavonols were evaluated for systematic analysis of structure-activity relationship (SAR) between flavonols and α-glucosidase inhibitory activity. By using their pIC50 (-log IC50) values, three-dimensional quantitative SAR (3D-QSAR) models were developed via comparative molecular field analysis (CoMFA) and comparative similarity index analysis (CoMSIA), both of which were validated to possess high accuracy and predictive power as indicated by the reasonable cross-validated coefficient (q 2) and non-cross-validated coefficient (r 2) values. Through analyzing 3D contour maps of both CoMFA and CoMSIA models, QSAR results were in agreement with in vitro experimental data. Therefore, such results showed that the galloyl group in compounds 2 and 3 is crucial for interacting with key residues of α-glucosidase and the established 3D-QSAR models could provide valuable information for the prediction of flavonols with great antidiabetic potential.


Asunto(s)
Flavonoles , Inhibidores de Glicósido Hidrolasas , Antioxidantes , Química Computacional , Flavonoides , Flavonoles/farmacología , Inhibidores de Glicósido Hidrolasas/farmacología , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad Cuantitativa , alfa-Glucosidasas
9.
Hortic Res ; 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35048127

RESUMEN

Flavonoids are the most widespread polyphenolic compounds and are important dietary constituents present in horticultural crops such as fruits, vegetables, and tea. Natural flavonoids are responsible for important quality traits, such as food colors and beneficial dietary antioxidants and numerous investigations have shown that intake of flavonoids can reduce the incidence of various non-communicable diseases (NCDs). Analysis of the thousands of flavonoids reported so far has shown that different hydroxylation modifications affect their chemical properties and nutritional values. These diverse flavonoids can be classified based on different hydroxylation patterns in the B, C, A rings and multiple structure-activity analyses have shown that hydroxylation decoration at specific positions markedly enhances their bioactivities. This review focuses on current knowledge concerning hydroxylation of flavonoids catalyzed by several different types of hydroxylase enzymes. Flavonoid 3'-hydroxylase (F3'H) and flavonoid 3'5'-hydroxylase (F3'5'H) are important enzymes for the hydroxylation of the B ring of flavonoids. Flavanone 3-hydroxylase (F3H) is key for the hydroxylation of the C ring, while flavone 6-hydroxylase (F6H) and flavone 8-hydroxylase (F8H) are key enzymes for hydroxylation of the A ring. These key hydroxylases in the flavonoid biosynthesis pathway are promising targets for the future bioengineering of plants and mass production of flavonoids with designated hydroxylation patterns of high nutritional importance. In addition, hydroxylation in key places on the ring may help render flavonoids ready for degradation, the catabolic turnover of which may open the door for new lines of inquiry.

10.
Front Plant Sci ; 12: 691384, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34249063

RESUMEN

Chinese bayberry (Morella rubra), the most economically important fruit tree in the Myricaceae family, is a rich source of natural flavonoids. Recently the Chinese bayberry genome has been sequenced, and this provides an opportunity to investigate the organization and evolutionary characteristics of MrMYB genes from a whole genome view. In the present study, we performed the genome-wide analysis of MYB genes in Chinese bayberry and identified 174 MrMYB transcription factors (TFs), including 122 R2R3-MYBs, 43 1R-MYBs, two 3R-MYBs, one 4R-MYB, and six atypical MYBs. Collinearity analysis indicated that both syntenic and tandem duplications contributed to expansion of the MrMYB gene family. Analysis of transcript levels revealed the distinct expression patterns of different MrMYB genes, and those which may play important roles in leaf and flower development. Through phylogenetic analysis and correlation analyses, nine MrMYB TFs were selected as candidates regulating flavonoid biosynthesis. By using dual-luciferase assays, MrMYB12 was shown to trans-activate the MrFLS1 promoter, and MrMYB39 and MrMYB58a trans-activated the MrLAR1 promoter. In addition, overexpression of 35S:MrMYB12 caused a significant increase in flavonol contents and induced the expression of NtCHS, NtF3H, and NtFLS in transgenic tobacco leaves and flowers and significantly reduced anthocyanin accumulation, resulting in pale-pink or pure white flowers. This indicates that MrMYB12 redirected the flux away from anthocyanin biosynthesis resulting in higher flavonol content. The present study provides valuable information for understanding the classification, gene and motif structure, evolution and predicted functions of the MrMYB gene family and identifies MYBs regulating different aspects of flavonoid biosynthesis in Chinese bayberry.

11.
Plant J ; 108(2): 411-425, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34331782

RESUMEN

Flavonols are health-promoting bioactive compounds important for plant defense and human nutrition. Quercetin (Q) and kaempferol (K) biosynthesis have been studied extensively while little is known about myricetin (M) biosynthesis. The roles of flavonol synthases (FLSs) and flavonoid 3',5'-hydroxylase (F3'5'H) in M biosynthesis in Morella rubra, a member of the Myricaceae rich in M-based flavonols, were investigated. The level of MrFLS transcripts alone did not correlate well with the accumulation of M-based flavonols. However, combined transcript data for MrFLS1 and MrF3'5'H showed a good correlation with the accumulation of M-based flavonols in different tissues of M. rubra. Recombinant MrFLS1 and MrFLS2 proteins showed strong activity with dihydroquercetin (DHQ), dihydrokaempferol (DHK), and dihydromyricetin (DHM) as substrates, while recombinant MrF3'5'H protein preferred converting K to M, amongst a range of substrates. Tobacco (Nicotiana tabacum) overexpressing 35S::MrFLSs produced elevated levels of K-based and Q-based flavonols without affecting M-based flavonol levels, while tobacco overexpressing 35S::MrF3'5'H accumulated significantly higher levels of M-based flavonols. We conclude that M accumulation in M. rubra is affected by gene expression and enzyme specificity of FLS and F3'5'H as well as substrate availability. In the metabolic grid of flavonol biosynthesis, the strong activity of MrF3'5'H with K as substrate additionally promotes metabolic flux towards M in M. rubra.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Flavonoides/biosíntesis , Myricaceae/metabolismo , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Escherichia coli/genética , Flavonoides/genética , Flavonoides/metabolismo , Flavonoles/genética , Flavonoles/metabolismo , Regulación de la Expresión Génica de las Plantas , Myricaceae/genética , Oxidorreductasas/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Quercetina/análogos & derivados , Quercetina/genética , Quercetina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Especificidad por Sustrato , Nicotiana/genética
12.
Plant Biotechnol J ; 19(4): 671-688, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33089636

RESUMEN

Flavanones and flavones are excellent source of bioactive compounds but the molecular basis of their highly efficient production remains elusive. Chalcone isomerase (CHI) family proteins play essential roles in flavonoid biosynthesis but little are known about the transcription factors controlling their gene expression. Here, we identified a type IV CHI (designated as CitCHIL1) from citrus which enhances the accumulation of citrus flavanones and flavones (CFLs). CitCHIL1 participates in a CFL biosynthetic metabolon and assists the cyclization of naringenin chalcone to (2S)-naringenin, which leads to the efficient influx of substrates to chalcone synthase (CHS) and improves the catalytic efficiency of CHS. Overexpressing CitCHIL1 in Citrus and Arabidopsis significantly increased flavonoid content and RNA interference-induced silencing of CitCHIL1 in citrus led to a 43% reduction in CFL content. Three AP2/ERF transcription factors were identified as positive regulators of the CitCHIL1 expression. Of these, two dehydration-responsive element binding (DREB) proteins, CitERF32 and CitERF33, activated the transcription by directly binding to the CGCCGC motif in the promoter, while CitRAV1 (RAV: related to ABI3/VP1) formed a transcription complex with CitERF33 that strongly enhanced the activation efficiency and flavonoid accumulation. These results not only illustrate the specific function that CitCHIL1 executes in CFL biosynthesis but also reveal a new DREB-RAV transcriptional complex regulating flavonoid production.


Asunto(s)
Citrus , Citrus/genética , Citrus/metabolismo , Flavonoides , Regulación de la Expresión Génica de las Plantas , Liasas Intramoleculares , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Zhongguo Zhong Yao Za Zhi ; 45(15): 3575-3583, 2020 Aug.
Artículo en Chino | MEDLINE | ID: mdl-32893546

RESUMEN

Myricetin and its glycosides are important flavonols commonly found in plants, and they are natural organic compounds with diverse pharmacological activities. Numerous studies have demonstrated that myricetin and its glycosides are strong antioxidants that have great potential in preventing, alleviating and assisting the treatment of chronic non-infectious diseases such as cancer, diabetes, and cardiovascular diseases. In addition, myricetin and its glycosides also have antiviral, antibacterial, anti-inflammatory, analgesic, liver protection and other pharmacological activities. Myricetin contains more hydroxyl groups in the parent ring structure than other flavonoids, so myricetin and its glycosides have stronger pharmacological activities than other flavonols or flavonoids such as quercetin and kaempferol. Therefore, myricetin and its glycosides have great development and application prospects. In this paper, the classification and distribution of myricetin and its glycosides, their pharmacological activity and mechanism, as well as comparison with other flavonoids were reviewed. In addition, limitations of the current research and application of myricetin and its glycosides were analyzed, and the further studies on pharmacological activities as well as their dose-activity relationship, structure-activity relationship, chemical modification, biosynthesis and application prospects of myricetin and its glycosides were discussed and proposed.


Asunto(s)
Flavonoides , Glicósidos , Flavonoles , Quercetina
14.
Plant Physiol Biochem ; 155: 658-666, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32861032

RESUMEN

UDP-l-rhamnose (UDP-Rha) is an important sugar donor for glycosylation of various cell molecules in plant. Rhamnosides are widely present in different plant tissues and play important biological roles under different developmental or environmental conditions. However, enzymes involved in UDP-Rha biosynthesis and their encoding genes have been identified in few plants, which limits the functional analysis of plant rhamnosides. Here, two UDP-Rha biosynthesis genes, named PpRHM1 (2028 bp) and PpRHM2 (2016 bp), were isolated and characterized from Prunus persica, which is rich sources of flavonol rhamnosides. Both recombinant RHM proteins can catalyze the transformation from UDP-d-glucose (UDP-Glc) to UDP-Rha, which was confirmed by LC-MS and formation of flavonol rhamnosides. Biochemical analysis showed that both recombinant RHM proteins preferred alkaline conditions in pH range of 8.0-9.0 and had optimal reaction temperature between 25 and 30 °C. PpRHM1 showed the better UDP-Glc substrate affinity with Km of 360.01 µM. Gene expression analysis showed different transcript levels of both RHMs in all plant tissues tested, indicating the involvement of rhamnosides in various tissues in plant. Such results provide better understanding of UDP-Rha biosynthesis in fruit tree and may be helpful for further investigation of various rhamnose derivatives and their biological functions.


Asunto(s)
Hidroliasas/metabolismo , Proteínas de Plantas/metabolismo , Prunus persica/enzimología , Ramnosa/biosíntesis , Flavonoles , Glucosa , Hidroliasas/genética , Proteínas de Plantas/genética , Prunus persica/genética , Proteínas Recombinantes
15.
Hortic Res ; 7(1): 86, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528698

RESUMEN

Wound damage triggers the accumulation of abscisic acid (ABA), which induces the expression of a large number of genes involved in wound suberization in plants. Fatty acyl-CoA reductase (FAR) catalyzes the generation of primary fatty alcohols by the reduction of fatty acids in suberin biosynthesis. However, the regulatory effects of transcription factors (TFs) on AchnFAR in response to ABA are unexplored. In this study, kiwifruit AchnFAR displayed a biological function analogous to that of FAR in transiently overexpressed tobacco (Nicotiana benthamiana) leaves. The positive role of TFs, including AchnMYB41, AchnMYB107, and AchnMYC2, in the regulation of AchnFAR was identified. The three TFs could individually bind to the AchnFAR promoter to activate gene transcription in yeast one-hybrid and dual-luciferase assays. Transient overexpression of TFs in tobacco leaves resulted in the upregulation of aliphatic synthesis genes (including FAR) and the increase in aliphatics, including primary alcohols, α,ω-diacids, ω-hydroxyacids, and fatty acids. Moreover, exogenous ABA treatment elevated TF-mediated AchnFAR expression and the accumulation of primary alcohols. Conversely, fluridone, an inhibitor of ABA biosynthesis, suppressed the expression of AchnFAR and TF genes and reduced the formation of primary alcohols. The results indicate that AchnMYB41, AchnMYB107, and AchnMYC2 activate AchnFAR transcription to promote ABA-mediated primary alcohol formation in wound suberization in kiwifruit.

16.
Food Chem ; 312: 126124, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31926461

RESUMEN

Apple is rich in flavonol glycosides, which are believed to contribute to putative health benefits associated with apple consumption. Glycosylation, catalyzed by uridine diphospho-glycosyltransferases (UGTs), is the last step in flavonol biosynthesis, which confers molecular stability and solubility to the flavonol. In the present study, the involvement of two UGTs, MdUGT75B1 and MdUGT71B1, in flavonol biosynthesis in apple was investigated. The major flavonols are quercetin 3-O-glycosides, and UV-B and blue light treatment significantly enhanced the accumulation of quercetin 3-O-galactoside, quercetin 3-O-glucoside, and kaempferol 3-O-galactoside. Transcript levels of MdUGT75B1 and MdUGT71B1 in fruit subjected to different treatments were correlated well with flavonol accumulation. MdUGT75B1 showed flavonol-specific activity with a preference for UDP-galactose as the sugar donor, while MdUGT71B1 using UDP-glucose exhibited a wider substrate acceptance. Thus, MdUGT75B1 and MdUGT71B1 are key UGTs involved in flavonol biosynthesis and may have important roles in regulating accumulation of these health-promoting bioactive compounds in apple.


Asunto(s)
Galactósidos/biosíntesis , Glucósidos/biosíntesis , Glicosiltransferasas/metabolismo , Quempferoles/biosíntesis , Malus/química , Quercetina/análogos & derivados , Frutas/química , Frutas/metabolismo , Malus/metabolismo , Quercetina/biosíntesis , Uridina/metabolismo
17.
Plant J ; 102(5): 965-976, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31923329

RESUMEN

Anthocyanin biosynthesis is induced by low temperatures in a number of plants. However, in peach (cv Zhonghuashoutao), anthocyanin accumulation was observed in fruit stored at 16°C but not at or below 12°C. Fruit stored at 16°C showed elevated transcript levels of genes encoding anthocyanin biosynthetic enzymes, the transport protein glutathione S-transferase and key transcription factors. Higher transcript levels of PpPAL1/2, PpC4H, Pp4CL4/5/8, PpF3H, PpF3'H, PpDFR1/2/3 and PpANS, as well as transcription factor gene PpbHLH3, were associated with lower methylation levels in the promoter of these genes. The DNA methylation level was further highly correlated with the expression of the DNA methyltransferase genes and DNA demethylase genes. The application of DNA methylation inhibitor 5-azacytidine induced anthocyanin accumulation in peach flesh, further implicating a critical role for DNA demethylation in regulating anthocyanin accumulation in peach flesh. Our data reveal that temperature-dependent DNA demethylation is a key factor to the post-harvest temperature-dependent anthocyanin accumulation in peach flesh.


Asunto(s)
Antocianinas/metabolismo , Proteínas de Plantas/metabolismo , Prunus persica/metabolismo , Desmetilación del ADN , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/genética , Prunus persica/genética , Temperatura
18.
Front Plant Sci ; 11: 603178, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33537042

RESUMEN

Red coloration contributes to fruit quality and is determined by anthocyanin content in peach (Prunus persica). Our previous study illustrated that anthocyanin accumulation is strongly regulated by light, and the effect of induction differs according to light quality. Here we showed that both ultraviolet-A (UVA) and ultraviolet-B (UVB) irradiation promoted anthocyanin biosynthesis in "Hujingmilu" peach fruit, and a combination of UVA and UVB had additional effects. The expression of anthocyanin biosynthesis and light signaling related genes, including transcription factor genes and light signaling elements, were induced following UV irradiation as early as 6 h post-treatment, earlier than apparent change in coloration which occurred at 72 h. To investigate the molecular mechanisms for UVA- and UVB-induced anthocyanin accumulation, the genes encoding ELONGATED HYPOCOTYL 5 (HY5), CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), Cryptochrome (CRY), and UV RESISTANCE LOCUS 8 (UVR8) in peach were isolated and characterized through functional complementation in corresponding Arabidopsis (Arabidopsis thaliana) mutants. PpHY5 and PpCOP1.1 restored hypocotyl length and anthocyanin content in Arabidopsis mutants under white light; while PpCRY1 and PpUVR8.1 restored AtHY5 expression in Arabidopsis mutants in response to UV irradiation. Arabidopsis PpHY5/hy5 transgenic lines accumulated higher amounts of anthocyanin under UV supplementation (compared with weak white light only), especially when UVA and UVB were applied together. These data indicated that PpHY5, acting as AtHY5 counterpart, was a vital regulator in UVA and UVB signaling pathway. In peach, the expression of PpHY5 was up-regulated by UVA and UVB, and PpHY5 positively regulated both its own transcription by interacting with an E-box in its own promoter, and the transcription of the downstream anthocyanin biosynthetic genes chalcone synthase 1 (PpCHS1), chalcone synthase 2 (PpCHS2), and dihydroflavonol 4-reductase (PpDFR1) as well as the transcription factor gene PpMYB10.1. In summary, functional evidence supports the role of PpHY5 in UVA and UVB light transduction pathway controlling anthocyanin biosynthesis. In peach this is via up-regulation of expression of genes encoding biosynthetic enzymes, as well as the transcription factor PpMYB10.1 and PpHY5 itself.

19.
Food Chem ; 309: 125705, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-31670122

RESUMEN

Red-peeled huyou has a distinct red peel color due mainly to the presence of red apocarotenoid ß-citraurin as well as the increase in amount of total carotenoids. The expression level of carotenoid cleavage dioxygenase 4b1 (CCD4b1) accounted for 99.0% of total transcript abundance of CCD4s in red-peeled huyou peel and was nearly 100 times higher than that in ordinary huyou. ß-Citraurin accumulation and peel coloration was mostly favored at 15 °C but strongly inhibited at moderately high temperatures 20 °C and 25 °C. Exogenous ethylene application for 3 d had no obvious effect on ß-citraurin accumulation in red-peeled huyou but holding fruit at moderately higher temperatures (20 °C and 25 °C) for 3 d had a significant adverse effect on ß-citraurin accumulation. The expression of phytoene synthase 1 (PSY1) and CCD4b1 was higher at 10 °C and 15 °C and significantly lower at 20 °C and 25 °C. The mechanisms governing the accumulation of ß-citraurin are discussed.


Asunto(s)
Citrus/efectos de los fármacos , Etilenos/farmacología , Almacenamiento de Alimentos/métodos , Carotenoides/análisis , Carotenoides/aislamiento & purificación , Citrus/química , Citrus/metabolismo , Dioxigenasas/genética , Dioxigenasas/metabolismo , Frutas/química , Frutas/efectos de los fármacos , Frutas/metabolismo , Geranilgeranil-Difosfato Geranilgeraniltransferasa/genética , Geranilgeranil-Difosfato Geranilgeraniltransferasa/metabolismo , Extracción Líquido-Líquido , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura , beta Caroteno/análogos & derivados , beta Caroteno/análisis , beta Caroteno/aislamiento & purificación
20.
J Exp Bot ; 71(1): 305-317, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31559426

RESUMEN

Suberin is a cell-wall biopolymer with aliphatic and aromatic domains that is synthesized in the wound tissues of plants in order to restrict water loss and pathogen infection. ω-hydroxyacid/fatty alcohol hydroxycinnamoyl transferase (FHT) is required for cross-linking of the aliphatic and aromatic domains. ABA is known to play a positive role in suberin biosynthesis but it is not known how it interacts with FHT. In this study, the kiwifruit (Actinidia chinensis) AchnFHT gene was isolated and was found to be localized in the cytosol. Transient overexpression of AchnFHT in leaves of Nicotiana benthamiana induced massive production of ferulate, ω-hydroxyacids, and primary alcohols, consistent with the in vitro ability of AchnFHT to catalyse acyl-transfer from feruloyl-CoA to ω-hydroxypalmitic acid and 1-tetradecanol. A regulatory function of four TFs (AchnABF2, AchnMYB4, AchnMYB41, and AchnMYB107) on AchnFHT was identified. These TFs localized in the nucleus and directly interacted with the AchnFHT promoter in yeast one-hybrid assays. Dual-luciferase analysis indicated that AchnABF2, AchnMYB41, and AchnMYB107 activated the AchnFHT promoter while AchnMYB4 repressed it. These findings were supported by the results of transient overexpression in N. benthamiana, in which AchnABF2, AchnMYB41, and AchnMYB107 induced expression of suberin biosynthesis genes (including FHT) and accumulation of suberin monomers, whilst AchnMYB4 had the opposite effect. Exogenous ABA induced the expression of AchnABF2, AchnMYB41, AchnMYB107, and AchnFHT and induced suberin monomer formation, but it inhibited AchnMYB4 expression. In addition, fluridone (an inhibitor of ABA biosynthesis) was found to counter the inductive effects of ABA. Activation of suberin monomer biosynthesis by AchnFHT was therefore controlled in a coordinated way by both repression of AchnMYB4 and promotion of AchnABF2, AchnMYB41, and AchnMYB107.


Asunto(s)
Ácido Abscísico/metabolismo , Actinidia/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Factores de Transcripción/genética , Actinidia/enzimología , Secuencia de Aminoácidos , Lípidos/fisiología , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Alineación de Secuencia , Factores de Transcripción/química , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA