Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
ACS Nano ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39022809

RESUMEN

Living organisms use ions and small molecules as information carriers to communicate with the external environment at ultralow power consumption. Inspired by biological systems, artificial ion-based devices have emerged in recent years to try to realize efficient information-processing paradigms. Nanofluidic ionic memristors, memory resistors based on confined fluidic systems whose internal ionic conductance states depend on the historical voltage, have attracted broad attention and are used as neuromorphic devices for computing. Despite their high exposure, nanofluidic ionic memristors are still in the initial stage. Therefore, systematic guidance for developing and reasonably designing ionic memristors is necessary. This review systematically summarizes the history, mechanisms, and potential applications of nanofluidic ionic memristors. The essential challenges in the field and the outlook for the future potential applications of nanofluidic ionic memristors are also discussed.

2.
Sci Adv ; 10(11): eadj7867, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38478611

RESUMEN

The voltage-gated ion channels, also known as ionic transistors, play substantial roles in biological systems and ion-ion selective separation. However, implementing the ultrafast switchable capabilities and polarity switching of ionic transistors remains a challenge. Here, we report a nanofluidic ionic transistor based on carbon nanotubes, which exhibits an on/off ratio of 104 at operational gate voltage as low as 1 V. By controlling the morphology of carbon nanotubes, both unipolar and ambipolar ionic transistors are realized, and their on/off ratio can be further improved by introducing an Al2O3 dielectric layer. Meanwhile, this ionic transistor enables the polarity switching between p-type and n-type by controlled surface properties of carbon nanotubes. The implementation of constructing ionic circuits based on ionic transistors is demonstrated, which enables the creation of NOT, NAND, and NOR logic gates. The ionic transistors are expected to have profound implications for low-energy consumption computing devices and brain-machine interfacing.

3.
Toxicol Appl Pharmacol ; 485: 116876, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38437955

RESUMEN

BACKGROUND: Olanzapine antagonizes dopamine receptors and is prescribed to treat multiple psychiatric conditions. The main side effect of concern for olanzapine is weight gain and metabolic syndrome. Olanzapine induces hyperprolactinemia, however its effect on the mammary gland is poorly documented. METHODS: Rats received olanzapine by gavage or in drinking water at 1, 3, and 6 mg/kg/day for 5-40 days or 100 days, with and without coadministration of bromocriptine or aripiprazole and using once daily or continuous administration strategies. Histomorphology of the mammary gland, concentrations of prolactin, estradiol, progesterone, and olanzapine in serum, mammary gland and adipose tissue, and mRNA and protein expressions of prolactin receptors were analyzed. RESULTS: In adult and prepubescent female rats and male rats, olanzapine induced significant development of mammary glands in dose- and time-dependent manners, with histopathological hyperplasia of mammary ducts and alveoli with lumen dilation and secretion, marked increase of mammary prolactin receptor expression, a marker of breast tissue, and with mild increase of circulating prolactin. This side effect can be reversed after medication withdrawal, but long-term olanzapine treatment for 100 days implicated tumorigenic potentials indicated by usual ductal epithelial hyperplasia. Olanzapine induced mammary development was prevented with the coaddition of the dopamine agonist bromocriptine or partial agonist aripiprazole, or by continuous administration of medication instead of a once daily regimen. CONCLUSIONS: These results shed light on the previously overlooked effect of olanzapine on mammary development and present experimental evidence to support current clinical management strategies of antipsychotic induced side effects in the breast.


Asunto(s)
Antipsicóticos , Aripiprazol , Benzodiazepinas , Bromocriptina , Glándulas Mamarias Animales , Olanzapina , Prolactina , Animales , Olanzapina/toxicidad , Femenino , Glándulas Mamarias Animales/efectos de los fármacos , Glándulas Mamarias Animales/patología , Aripiprazol/toxicidad , Ratas , Prolactina/sangre , Antipsicóticos/toxicidad , Antipsicóticos/efectos adversos , Benzodiazepinas/toxicidad , Masculino , Ratas Sprague-Dawley , Receptores de Prolactina/metabolismo , Estradiol/sangre , Relación Dosis-Respuesta a Droga , Progesterona/sangre , Quinolonas/toxicidad , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Piperazinas/toxicidad
4.
Angew Chem Int Ed Engl ; 63(17): e202401477, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38419469

RESUMEN

Voltage-gated ion channels prevalent in neurons play important roles in generating action potential and information transmission by responding to transmembrane potential. Fabricating bio-inspired ionic transistors with ions as charge carriers will be crucial for realizing neuro-inspired devices and brain-liking computing. Here, we reported a two-dimensional nanofluidic ionic transistor based on a MXene membrane with sub-1 nm interlayer channels. By applying a gating voltage on the MXene nanofluidic, a transmembrane potential will be generated to active the ionic transistor, which is similar to the transmembrane potential of neuron cells and can be effectively regulated by changing membrane parameters, e.g., thickness, composition, and interlayer spacing. For the symmetric MXene nanofluidic, a high on/off ratio of ~2000 can be achieved by forming an ionic depletion or accumulation zone, contingent on the sign of the gating potential. An asymmetric PET/MXene-composited nanofluidic transitioned the ionic transistor from ambipolar to unipolar, resulting in a more sensitive gate voltage characteristic with a low subthreshold swing of 560 mV/decade. Furthermore, ionic logic gate circuits, including the "NOT", "NAND", and "NOR" gate, were implemented for neuromorphic signal processing successfully, which provides a promising pathway towards highly parallel, low energy consumption, and ion-based brain-like computing.


Asunto(s)
Encéfalo , Nitritos , Elementos de Transición , Potenciales de Acción , Iones , Potenciales de la Membrana
5.
ACS Nano ; 18(6): 4624-4650, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38285731

RESUMEN

Biological voltage-gated ion channels, which behave as life's transistors, regulate ion transport precisely and selectively through atomic-scale selectivity filters to sustain important life activities. By this inspiration, voltage-adaptable ionic transistors that use ions as signal carriers may provide an alternative information processing unit beyond solid-state electronic devices. This review provides a comprehensive overview of the first generation of biomimetic ionic transistors, including their operating mechanisms, device architecture development, and property characterizations. Despite its infancy, significant progress has been made in the applications of ionic transistors in fields such as DNA detection, drug delivery, and ionic circuits. Challenges and prospects of full exploitation of ionic transistors for a broad spectrum of practical applications are also discussed.

6.
Small ; 20(15): e2306809, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38009781

RESUMEN

The diagnosis and evaluation of traumatic brain injury (TBI) are crucial steps toward the treatment and prognosis of patients. A common question remains as to whether it is possible to introduce an ideal device for signal detection and evaluation that can directly connect digital signals with TBI, thereby enabling prompt response of the evaluation signal and sensitive and specific functioning of the detection process. Herein, a method is presented utilizing polymetric porous membranes with TRTK-12 peptide-modified nanochannels for the detection of S100B (a TBI biomarker) and assessment of TBI severity. The method leverages the specific bonding force between TRTK-12 peptide and S100B protein, along with the nanoconfinement effect of nanochannels, to achieve high sensitivity (LOD: 0.002 ng mL-1) and specificity (∆I/I0: 44.7%), utilizing ionic current change as an indicator. The proposed method, which is both sensitive and specific, offers a simple yet responsive approach for real-time evaluation of TBI severity. This innovative technique provides valuable scientific insights into the advancement of future diagnostic and therapeutic integration devices.


Asunto(s)
Biomimética , Lesiones Traumáticas del Encéfalo , Humanos , Péptidos , Lesiones Traumáticas del Encéfalo/diagnóstico , Pronóstico , Biomarcadores , Subunidad beta de la Proteína de Unión al Calcio S100
7.
Lipids Health Dis ; 22(1): 222, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38093311

RESUMEN

BACKGROUND: Previous studies demonstrated that mast cells with their degranulated component heparin are the major endogenous factors that stimulate preadipocyte differentiation and promote fascial adipogenesis, and this effect is related to the structure of heparin. Regarding the structural and physiological properties of the negatively charged polymers, hexasulfonated suramin, a centuries-old medicine that is still used for treating African trypanosomiasis and onchocerciasis, is assumed to be a heparin-related analog or heparinoid. This investigation aims to elucidate the influence of suramin on the adipogenesis. METHODS: To assess the influence exerted by suramin on adipogenic differentiation of primary white adipocytes in rats, this exploration was conducted both in vitro and in vivo. Moreover, it was attempted to explore the role played by the sulfonic acid groups present in suramin in mediating this adipogenic process. RESULTS: Suramin demonstrated a dose- and time-dependent propensity to stimulate the adipogenic differentiation of rat preadipocytes isolated from the superficial fascia tissue and from adult adipose tissue. This stimulation was concomitant with a notable upregulation in expression levels of pivotal adipogenic factors as the adipocyte differentiation process unfolded. Intraperitoneal injection of suramin into rats slightly increased adipogenesis in the superficial fascia and in the epididymal and inguinal fat depots. PPADS, NF023, and NF449 are suramin analogs respectively containing 2, 6, and 8 sulfonic acid groups, among which the last two moderately promoted lipid droplet formation and adipocyte differentiation. The number and position of sulfonate groups may be related to the adipogenic effect of suramin. CONCLUSIONS: Suramin emerges as a noteworthy pharmaceutical agent with the unique capability to significantly induce adipocyte differentiation, thereby fostering adipogenesis.


Asunto(s)
Adipogénesis , Suramina , Ratas , Animales , Suramina/farmacología , Antiparasitarios/farmacología , Diferenciación Celular , Adipocitos Blancos , Heparina/farmacología
8.
Small Methods ; : e2300261, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37256272

RESUMEN

Under the threat of energy crisis and environmental pollution, the technology for sustainable and clean energy extraction has received considerable attention. Owing to the intensive exploration of energy conversion strategies, expanded energy sources are successfully converted into electric energy, including mechanical energy from human motion, kinetic energy of falling raindrops, and thermal energy in the ambient. Among these energy conversion processes, charge transfer at different interfaces, such as solid-solid, solid-liquid, liquid-liquid, and gas-contained interfaces, dominates the power-generating efficiency. In this review, the mechanisms and applications of interfacial energy generators (IEGs) with different interface types are systematically summarized. Challenges and prospects are also highlighted. Due to the abundant interfacial interactions in nature, the development of IEGs offers a promising avenue of inexhaustible and environmental-friendly power generation to solve the energy crisis.

9.
Front Physiol ; 13: 1026019, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36452040

RESUMEN

As a novel origin of adipocytes, the superficial fascia, a typical soft connective tissue, has abundant adipocytes and preadipocytes, accompanied by numerous mast cells. Blood vessels pass through the fascia to form a network structure. The more reasonable statistical analysis methods can provide a new method for in-depth study of soft connective tissue by clarifying the spatial distribution relation between cells (point structure) and blood vessels (linear structure). This study adopted the Guidolin et al. statistical analysis methods used by epidemiology and ecology to quantitatively analyze the distribution pattern and correlations among blood vessels, adipocytes, and mast cells. Image-processing software and self-written computer programs were used to analyze images of whole-mounted fascia, and the relevant data were measured automatically. Voronoi's analysis revealed that the vascular network was non-uniformly distributed. In fascia with average area of 3.75 cm2, quantitative histological analysis revealed 81.16% of mast cells and 74.74% of adipocytes distributed within 60 µm of blood vessels. A Spearman's correlation coefficient (rs) of >0.7 showed the co-distribution of the two types of cells under different areas. Ridge regression analysis further revealed the spatial correlation among blood vessels, adipocytes and mast cells. The combination of classical epidemiological analysis and extended computer program analysis can better analyze the spatial distribution relation between cells and vessels and should provide an effective analysis method for study of the histology and morphology of fascia and related connective tissues.

10.
Antioxidants (Basel) ; 11(12)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36552575

RESUMEN

High altitude (HA) has become one of the most challenging environments featuring hypobaric hypoxia, which seriously threatens public health, hence its gradual attraction of public attention over the past decade. The purpose of this study is to investigate the effect of HA hypoxia on iron levels, redox state, inflammation, and ferroptosis in adipose tissue. Here, 40 mice were randomly divided into two groups: the sea-level group and HA hypoxia group (altitude of 5000 m, treatment for 4 weeks). Total iron contents, ferrous iron contents, ROS generation, lipid peroxidation, the oxidative enzyme system, proinflammatory factor secretion, and ferroptosis-related biomarkers were examined, respectively. According to the results, HA exposure increases total iron and ferrous iron levels in both WAT and BAT. Meanwhile, ROS release, MDA, 4-HNE elevation, GSH depletion, as well as the decrease in SOD, CAT, and GSH-Px activities further evidenced a phenotype of redox imbalance in adipose tissue during HA exposure. Additionally, the secretion of inflammatory factors was also significantly enhanced in HA mice. Moreover, the remarkably changed expression of ferroptosis-related markers suggested that HA exposure increased ferroptosis sensitivity in adipose tissue. Overall, this study reveals that HA exposure is capable of inducing adipose tissue redox imbalance, inflammatory response, and ferroptosis, driven in part by changes in iron overload, which is expected to provide novel preventive targets for HA-related illness.

11.
Adipocyte ; 11(1): 287-300, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35546508

RESUMEN

The organoid is a 3D cell architecture formed by self-organized tissues or cells in vitro with similar cell types, histological structures, and biological functions of the native organ. Depending on the unique organ structures and cell types, producing organoids requires individualized design and is still challenging. Organoids of some tissues, including adipose tissue, remain to generate to be more faithful to their original organ in structure and function. We previously established a new model of the origin of adipose cells originating from non-adipose fascia tissue. Here, we investigated superficial fascia fragments in 3D hydrogel and found they were able to transform into relatively large adipocyte aggregates containing mature unilocular adipocytes, which were virtually "fat organoids". Such fascia-originated fat organoids had a typical structure of adipose tissues and possessed the principal function of adipose cells in the synthesis, storage, hydrolysis of triglycerides and adipokines secretion. Producing fat organoids from superficial fascia can provide a new approach for adipocyte research and strongly evidences that both adipose tissues and cells originate from fascia. Our findings give insights into metabolic regulation by the crosstalk between different organs and tissues and provide new knowledge for investigating novel treatments for obesity, diabetes and other metabolic diseases.Abbreviations: 3D: three dimensional; ASC: adipose-derived stromal cells; C/EBP: CCAAT-enhancer-binding protein; EdU: 5-ethynyl-2-deoxyuridine; FABP4: fatty acid-binding protein 4; FAS: fatty acid synthase; FSCs: fascia-derived stromal cells; Plin1: perilipin-1; Plin2: perilipin-2; PPARγ: peroxisome proliferator-activated receptor γ; WAT: white adipose tissue.


Asunto(s)
Adipocitos , Tejido Adiposo , Ratas , Animales , Diferenciación Celular , Tejido Adiposo/metabolismo , Adipocitos/metabolismo , Tejido Adiposo Blanco , PPAR gamma/metabolismo , Adipogénesis
12.
Hepatology ; 76(6): 1794-1810, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35586979

RESUMEN

BACKGROUND AND AIMS: Hydrogen sulfide (H2 S) plays a protective role in NAFLD. However, whether cystathionine γ lyase (CSE), a dominant H2 S generating enzyme in hepatocytes, has a role in the pathogenesis of NAFLD is currently unclear. APPROACH AND RESULTS: We showed that CSE protein expression is dramatically downregulated, especially in fibrotic areas, in livers from patients with NAFLD. In high-fat diet (HFD)-induced NAFLD mice or an oleic acid-induced hepatocyte model, the CSE/H2 S pathway is also downregulated. To illustrate a regulatory role for CSE in NAFLD, we generated a hepatocyte-specific CSE knockout mouse (CSELKO ). Feeding an HFD to CSELKO mice, they showed more hepatic lipid deposition with increased activity of the fatty acid de novo synthesis pathway, increased hepatic insulin resistance, and higher hepatic gluconeogenic ability compared to CSELoxp control mice. By contrast, H2 S donor treatment attenuated these phenotypes. Furthermore, the protection conferred by H2 S was blocked by farnesoid X receptor (FXR) knockdown. Consistently, serum deoxycholic acid and lithocholic acid (FXR antagonists) were increased, and tauro-ß-muricholic acid (FXR activation elevated) was reduced in CSELKO . CSE/H2 S promoted a post-translation modification (sulfhydration) of FXR at Cys138/141 sites, thereby enhancing its activity to modulate expression of target genes related to lipid and glucose metabolism, inflammation, and fibrosis. Sulfhydration proteomics in patients' livers supported the CSE/H2 S modulation noted in the CSELKO mice. CONCLUSIONS: FXR sulfhydration is a post-translational modification affected by hepatic endogenous CSE/H2 S that may promote FXR activity and attenuate NAFLD. Hepatic CSE deficiency promotes development of nonalcoholic steatohepatitis. The interaction between H2 S and FXR may be amenable to therapeutic drug treatment in NAFLD.


Asunto(s)
Carcinoma Hepatocelular , Sulfuro de Hidrógeno , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Cistationina gamma-Liasa/genética , Cistationina gamma-Liasa/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Sulfuro de Hidrógeno/farmacología , Sulfuro de Hidrógeno/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Hígado/metabolismo , Ratones Noqueados , Fibrosis , Lípidos , Ratones Endogámicos C57BL
13.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1866(11): 159024, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34389520

RESUMEN

Fascial adipocytes are recently identified as a unique population of adipose cells, which have different developmental origins, anatomical locations, cytological and functional characteristics compared with subcutaneous or visceral adipocytes. Superficial fascia in rats (also in pigs but not obviously in mice) contains numbers of lineage committed preadipocytes which possess adipogenic potential in vivo. The present study aimed to investigate the physiological factors that contribute to fascial adipogenesis in rats. We detected that mast cells, adipose progenitor cells, and mature adipocytes distributed in certain fascia areas were closely associated with each other, and numerous heparin-loaded granules released from mast cells were distributed around fascial preadipocytes. The culture supernatants of rat peritoneal mast cells and RBL-2H3 mast cells contained 20-30 µg/ml of heparin, effectively activated PPAR-responsive luciferase activity, promoted mRNA and protein expressions of key adipogenic genes, and hence increased adipogenic differentiation of fascia- or epididymal adipose-derived stromal cells. Adipogenic effects of mast cell supernatants were mimicked by heparin but not by histamine or 5-hydroxytryptamine, and were antagonized by protamine sulfate. In rats, local administration of heparin-loaded microspheres for 30 days induced adipogenesis in local areas of superficial fascia. This adipogenic effects of heparin might be related by chain length of glucosamine units, because heparin stimulated stronger adipogenesis than dalteparin and enoxaparin with relatively short chains. Our findings suggested that mast cell and its granule heparin could serve as the endogenous physiological factors to initiate and accelerate local adipogenesis in superficial fascia, or in adipose tissue with the fascia naturally embedded inside.


Asunto(s)
Heparina/metabolismo , Mastocitos/metabolismo , Tejido Subcutáneo/metabolismo , Adipogénesis , Animales , Células Cultivadas , Masculino , Ratas , Ratas Sprague-Dawley
14.
Sci Rep ; 10(1): 19543, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33154539

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

15.
Redox Biol ; 37: 101742, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33045621

RESUMEN

Hyperhomocysteinemia (HHcy) is related to liver diseases, such as nonalcoholic fatty liver (NAFL). Although the precise pathogenesis of NAFL is still largely unknown, the links between organs seem to play a vital role. The current study aimed to explore the role of white adipose tissue in homocysteine (Hcy)-induced NAFL. Blood samples from nonhyperhomocysteinemia or hyperhomocysteinemia individuals were collected to assess correlation between Hcy and triglyceride (TG) or free fatty acids (FFAs) levels. C57BL/6 mice were maintained on a high-methionine diet or administered with Hcy (1.8 g/L) in the drinking water to establish an HHcy mouse model. We demonstrated that Hcy activated adipocyte lipolysis and that this change was accompanied by an increased release of FFAs and glycerol. Excessive FFAs were taken up by hepatocyte, which resulted in lipid accumulation in the liver. Treatment with acipimox (0.08 g kg -1 day -1), a potent chemical inhibitor of lipolysis, markedly decreased Hcy-induced NAFL. Mechanistically, hypoxia-inducible factor 1α (HIF1α)-endoplasmic reticulum oxidoreductin 1α (ERO1α) mediated pathway promoted H2O2 accumulation and induced endoplasmic reticulum (ER) overoxidation, ER stress and more closed ER-lipid droplet interactions, which were responsible for activating the lipolytic response. In conclusion, this study reveals that Hcy activates adipocyte lipolysis and suggests the potential utility of targeted ER redox homeostasis for treating Hcy-induced NAFL.


Asunto(s)
Homocisteína , Lipólisis , Adipocitos , Animales , Estrés del Retículo Endoplásmico , Peróxido de Hidrógeno , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo
16.
Circulation ; 142(18): 1752-1769, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-32900241

RESUMEN

BACKGROUND: Hydrogen sulfide (H2S) has antihypertension and anti-inflammatory effects, and its endogenous-generation key enzyme cystathionine γ lyase (CSE) is expressed in CD4+ T cells. However, the role of CD4+ T-cell endogenous CSE/H2S in the development of hypertension is unclear. METHODS: Peripheral blood lymphocytes were isolated from hypertensive patients or spontaneously hypertensive rats, then H2S production and expression of its generation enzymes, cystathionine ß synthase and CSE, were measured to determine the major H2S generation system changes in hypertension. Mice with CSE-specific knockout in T cells (conditional knockout, by CD4cre mice hybridization) and CD4 null mice were generated for investigating the pathophysiological relevance of the CSE/H2S system. RESULTS: In lymphocytes, H2S from CSE, but not cystathionine ß synthase, responded to blood pressure changes, supported by lymphocyte CSE protein changes and a negative correlation between H2S production with systolic blood pressure and diastolic blood pressure, but positive correlation with the serum level of interleukin 10 (an anti-inflammatory cytokine). Deletion of CSE in T cells elevated BP (5-8 mm Hg) under the physiological condition and exacerbated angiotensin II-induced hypertension. In keeping with hypertension, mesenteric artery dilation impaired association with arterial inflammation, an effect attributed to reduced immunoinhibitory T regulatory cell (Treg) numbers in the blood and kidney, thus causing excess CD4+ and CD8+ T cell infiltration in perivascular adipose tissues and kidney. CSE knockout CD4+ T cell transfer into CD4 null mice, also showed the similar phenotypes' confirming the role of endogenous CSE/H2S action. Adoptive transfer of Tregs (to conditional knockout mice) reversed hypertension, vascular relaxation impairment, and immunocyte infiltration, which confirmed that conditional knockout-induced hypertension was attributable, in part, to the reduced Treg numbers. Mechanistically, endogenous CSE/H2S promoted Treg differentiation and proliferation by activating AMP-activated protein kinase. In part, it depended on activation of its upstream kinase, liver kinase B1, by sulfhydration to facilitate its substrate binding and phosphorylation. CONCLUSION: The constitutive sulfhydration of liver kinase B1 by CSE-derived H2S activates its target kinase, AMP-activated protein kinase, and promotes Treg differentiation and proliferation, which attenuates the vascular and renal immune-inflammation, thereby preventing hypertension.


Asunto(s)
Diferenciación Celular , Cistationina gamma-Liasa/metabolismo , Sulfuro de Hidrógeno/metabolismo , Hipertensión/enzimología , Proteínas Serina-Treonina Quinasas/metabolismo , Linfocitos T Reguladores/enzimología , Quinasas de la Proteína-Quinasa Activada por el AMP , Proteínas Quinasas Activadas por AMP , Animales , Cistationina gamma-Liasa/genética , Femenino , Humanos , Hipertensión/genética , Masculino , Ratones , Ratones Noqueados , Estudios Prospectivos , Proteínas Serina-Treonina Quinasas/genética , Ratas , Ratas Endogámicas SHR , Linfocitos T Reguladores/patología
17.
Artículo en Inglés | MEDLINE | ID: mdl-31816411

RESUMEN

The dermal adipocytes, superficial fascia and subcutaneous adipose tissue (SAT) exist in the interspaces between the dermis and muscular fascia. They are adjacent to each other and traditionally recognized as one SAT. Recently, the dermal adipocyte was redefined as a unique population independent from the SAT. Also, we identified a novel type of adipogenic progenitors in rat superficial fascia. This study aimed to examine cytological and functional characteristics of fascial adipocytes in rats. Superficial fascia had no adipocytes in neonatal rats but gradually appeared numbers of adipocytes in growing rats. Adipogenic progenitors were found to reside in fascia and had strong ability in spontaneous and induced adipogenic differentiation in vitro. Differentiated fascial adipocytes versus subcutaneous or visceral adipocytes expressed increased adipose triglyceride lipase but decreased beta-adrenoreceptor, perilipin-1 and hormone-sensitive lipase (HSL), thus having high basal lipolysis but low lipolysis response to catecholamines. Phosphorylation of perilipin-1 and HSL and translocation of HSL to lipid droplets were attenuated in response to catecholamines rather than post-adrenoreceptoral lipolytic stimulators. The results suggested that superficial fascia was an origin of adipocytes with distinct developmental, cytological and functional characteristics. We proposed that fascial adipocytes could be considered as a unique population of adipocytes in the body. The fascia origin of adipocytes as an adipogenic model might logically explain fat neogenesis occurred at anatomical locations where originally exist no adipose tissues and thereby no adipose-derived stromal precursors. Also, the special histoanatomical relations and overlaps between the dermis, superficial fascia, SAT, and their adipocytes were discussed.


Asunto(s)
Adipocitos Blancos/metabolismo , Lipogénesis/fisiología , Lipólisis/fisiología , Tejido Subcutáneo/metabolismo , Adipocitos Blancos/citología , Animales , Catecolaminas/metabolismo , Diferenciación Celular/fisiología , Gotas Lipídicas/metabolismo , Masculino , Células Madre Mesenquimatosas/fisiología , Modelos Biológicos , Perilipina-1/metabolismo , Fosforilación , Ratas , Esterol Esterasa/metabolismo
18.
Biochem Biophys Res Commun ; 521(3): 786-790, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31706571

RESUMEN

Hydrogen sulfide (H2S) is a novel adipokine mediating glucose uptake, lipid storage and mobilization, thus contributing to the genesis of obesity and associated diseases. Our previous work demonstrated that H2S inhibited isoproterenol-stimulated lipolysis by reducing the phosphorylation of perilipin 1 (plin-1), a lipid-droplet protein blocking lipase access. How H2S modulates plin-1 phosphorylation is still unclear. Our present study found that an H2S donor slightly increased adipose tissue weight and reduced lipolysis in mice; by contrast, deleting the key H2S generation enzyme cystathionine gamma lyase (CSE) in adipocytes lowered adipose accumulation and enhanced lipolysis. Intriguingly, an H2S donor induced sulfhydration of plin-1 but not hormone-sensitive lipase, and CSE deletion abolished the post-translational modification of plin-1. During isoproterenol-stimulated lipolysis, plin-1 sulfhydration was associated with reduced phosphorylation, and removing sulfhydration by dithiothreitol recovered the phosphorylation. Finally, plin-1 knockout abolished the effect of H2S on lipolysis, which indicates that plin-1 sulfhydration is a major direct target of H2S in lipolysis. We have identified a new post-translation modification, sulfhydration (direct action by H2S) of plin-1, causing reduced phosphorylation then decreased lipolysis. This finding also highlights a novel molecular regulatory mechanism of lipolysis.


Asunto(s)
Adipocitos/metabolismo , Cistationina gamma-Liasa/metabolismo , Sulfuro de Hidrógeno/metabolismo , Lipólisis , Perilipina-1/metabolismo , Animales , Células Cultivadas , Masculino , Ratones Endogámicos C57BL , Fosforilación , Procesamiento Proteico-Postraduccional , Ratas Sprague-Dawley
19.
Histochem Cell Biol ; 152(6): 439-451, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31549232

RESUMEN

Superficial fascia has abundant preadipocytes capable of spontaneous and induced differentiation and is thought to be a novel origin of adipocytes. This study aimed to quantitatively evaluate the spatial distribution and correlation of adipocytes and mast cells in rat superficial fascia. Panoramic images were obtained from whole-mounted fascia stained by toluidine blue. Adipocytes increased gradually in superficial fascia of growing rats. Abundant mast cells, with the degranulation and exocytosis of abundant secretory granules, appeared in fascia where partially differentiating adipocytes and mature adipocytes occurred. Quantitative histological analysis by variance-mean ratio and Morisita index of dispersion indicated that both mast cells and adipocytes in fascia were distributed individually in cluster, but not random or uniform. Spearman's correlation coefficient revealed that the spatial cluster distributions of mast cells and adipocytes positively correlated with each other and correlated with increased number and size of adipocytes and adipogenic areas in fascia. Morphometry analysis indicated the strong correlation between fascial adipocytes and mast cells during the periods of rat growth. The correlation coefficient increased significantly at 8 weeks compared to 4 weeks, consistent with the increasing trend of the number and size of fascia adipocytes in growing rats. This finding provided the first quantitative histological analysis for the spatial distribution and correlation of fascia adipocytes and mast cells, which could be the histocytological basis for further exploring spatial and functional interactions between fascial mast cells and adipocytes. Also, the present data were informative for the research on physiologies and pathologies of fascia and fascia-related connective tissues.


Asunto(s)
Adipocitos/citología , Fascia/citología , Mastocitos/citología , Análisis Espacial , Animales , Masculino , Ratas , Ratas Sprague-Dawley
20.
Br J Pharmacol ; 176(17): 3180-3192, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31140595

RESUMEN

BACKGROUND AND PURPOSE: Hydrogen sulfide donors can block the cardiovascular injury of hyperhomocysteinemia. H2 S also lowers serum homocysteine in rats with mild hyperhomocysteinemia, but the pharmacological mechanism is unknown. The present study investigated the mechanism(s) involved. EXPERIMENTAL APPROACH: ApoE-knockout mice were fed a Paigen diet and L-methionine in drinking water for 16 weeks to create a mouse model of atherosclerosis with hyperhomocysteinemia. H2 S donors (NaHS and GYY4137) were administered by intraperitoneal injection. We also assayed the H2 S produced (by methylene blue assay and mito-HS [H2 S fluorescence probe]), cystathionine γ lyase (CSE) mRNA and protein expression, and CSE sulfhydration and nitrosylation and its activity. KEY RESULTS: H2 S donor treatment significantly lowered atherosclerotic plaque area, macrophage infiltration, and serum homocysteine level in the mouse model of atherosclerosis with co-existing hyperhomocysteinemia. mRNA and protein levels of CSE, a key enzyme catalyzing homocysteine trans-sulfuration, were down-regulated with hyperhomocysteinemia, and CSE catalytic activity was inhibited. All these effects were reversed with H2 S donor treatment. Hyperhomocysteinemia induced CSE nitrosylation, whereas H2 S sulfhydrated CSE at the same cysteine residues. Nitrosylated CSE decreased and sulfhydrated CSE increased its catalytic and binding activities towards L-homocysteine. Mutation of C252, C255, C307, and C310 residues in CSE abolished CSE nitrosylation or sulfhydration and prevented its binding to L-homocysteine. CONCLUSIONS AND IMPLICATIONS: Sulfhydration or nitrosylation of CSE represents a yin/yang regulation of catalysis or binding to L-homocysteine. H2 S donor treatment enhanced CSE sulfhydration, thus lowering serum L-homocysteine, which contributed in part to the anti-atherosclerosis effects in ApoE-knockout mice with hyperhomocysteinemia.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Cistationina gamma-Liasa/metabolismo , Sulfuro de Hidrógeno/farmacología , Hiperhomocisteinemia/tratamiento farmacológico , Animales , Aterosclerosis/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Células HEK293 , Células Hep G2 , Humanos , Sulfuro de Hidrógeno/análisis , Sulfuro de Hidrógeno/metabolismo , Hiperhomocisteinemia/metabolismo , Masculino , Ratones , Ratones Noqueados para ApoE , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA