Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Life Sci ; 335: 122259, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37949212

RESUMEN

AIMS: To determine if cellulose nanofibrils (CNF) have potential applications as food additives. MATERIALS AND METHODS: Male C57BL/6 mice on a Western diet were exposed to CNF for one month at a dose of 30 mg/kg by gavage. Male NOD mice, a model for type 1 diabetes (T1D), were used in a six-month study. KEY FINDINGS: Sequencing analysis of 16S rRNA genes suggested significant changes in gut microbiome of male C57BL/6 mice exposed to CNF. Analysis of functional metagenomics indicated that many of the functional contents that might be altered following CNF ingestion were associated with lipid and carbohydrate processing. Further studies in NOD mice suggested that there were some decreases in the blood glucose levels during the insulin tolerance test and glucose tolerance test following CNF treatment. However, these small decreases were not considered biologically meaningful as there were no significant changes in either the area under the curve or the first-order rate constant for glucose disappearance. Moreover, serum concentrations of cytokines/chemokines including IL-3, IL-12(p70) and the keratinocyte chemoattractant were increased following chronic exposure to CNF. In addition, behavioral studies suggested that the percentage of immobility time during the tail-suspension test was significantly increased following six months of exposure to CNF in NOD mice, signifying an increase in depression-related behavior. SIGNIFICANCE: Collectively, long-term CNF consumption was associated with changes in the ecology of the gut microbiome, immune homeostasis, and possibly energy metabolism and mental health in male NOD mice on a Western diet.


Asunto(s)
Microbioma Gastrointestinal , Masculino , Animales , Ratones , Ratones Endogámicos NOD , Dieta Occidental/efectos adversos , ARN Ribosómico 16S/genética , Depresión , Ratones Endogámicos C57BL
2.
Reprod Toxicol ; 103: 181-190, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34147626

RESUMEN

Both bisphenol A (BPA) and its analog bisphenol S (BPS) are industrial chemicals that have been used to make certain plastic products applied in chicken farms, including food and water containers. They are endocrine disrupting chemicals (EDCs) with xenoestrogenic activities and affect reproductive success in many ways. It was hypothesized that BPA and BPS could adversely affect the folliculogenesis in chickens due to their disruption of the estrogen responses, using either genomic or non-genomic mechanisms. This study investigated the deleterious effects of BPA and BPS on the ovaries when adult layer chickens were orally treated with these EDCs at 50 µg/kg body weight, the reference dose for chronic oral exposure of BPA established by the U.S. EPA. The chickens in both BPA and BPS-treated groups showed a decreased number of the preovulatory follicles. BPA-treated chickens showed a significant decrease in the diameter of F1. Additionally, both BPA and BPS treatments increased the infiltrations of lymphocytes and plasma cells in ovaries. Moreover, it was found that the ovaries of BPS-treated chickens weighed the most among the groups. RNA sequencing and subsequent pathway enrichment analysis of differentially expressed genes revealed that both BPA- and BPS-treatment groups showed significant changes in gene expression and pathways related to reproduction, immune function and carcinogenesis. Taken together, both BPA and BPS are potentially carcinogenic and have deleterious effects on the fertility of laying chickens by inducing inflammation, suggesting that BPS may not be a safe replacement for BPA.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Folículo Ovárico/efectos de los fármacos , Fenoles/toxicidad , Sulfonas/toxicidad , Animales , Pollos , Estrógenos , Femenino , Fertilidad , Expresión Génica/efectos de los fármacos , Folículo Ovárico/crecimiento & desarrollo , Ovario/efectos de los fármacos , Reproducción
3.
Crit Rev Toxicol ; 51(4): 283-300, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33949917

RESUMEN

Bisphenols are common chemicals found in plastics and epoxy resins. Over the past decades, many studies have shown that bisphenol A (BPA) is a potential endocrine-disrupting chemical that may cause multisystem toxicity. However, the relative safety of BPA analogues is a controversial subject. Herein, we conducted a review of the reproductive toxicity, neurotoxicity, immunotoxicity, metabolic toxicity and gut microbiome toxicity of the BPA analogues in various species, including Caenorhabditis elegans, zebrafish, turtles, sheep, rodents, and humans. In addition, the mechanisms of action were discussed with focus on bisphenol S and bisphenol F. It was found that these BPA analogues exert their toxic effects on different organs and systems through various mechanisms including epigenetic modifications and effects on cell signaling pathways, microbiome, and metabolome in different species. More research is needed to study the relative toxicity of the lesser-known BPA analogues compared to BPA, both systemically and organ specifically, and to better define the underlying mechanisms of action, in particular, the potentials of disrupting microbiome and metabolism.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Sistema Inmunológico/efectos de los fármacos , Fenoles/toxicidad , Animales , Disruptores Endocrinos , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Reproducción/efectos de los fármacos , Ovinos , Sulfonas , Pez Cebra
4.
Toxicol Appl Pharmacol ; 402: 115130, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32673657

RESUMEN

The healthy and diverse microbes living in our gut provide numerous benefits to our health. It is increasingly recognized that the gut microbiome affects the host's neurobehavioral state through production of metabolites, modulation of intestinal immunity (e.g., cytokines) and other mechanisms (e.g., gut neuropeptides). By sending the sensed information (e.g., metabolic and immunologic mediators) about the state of the inner organs to the brain via afferent fibers, the vagus nerve maintains one of the connections between the brain and GI tract, and oversees many critical bodily functions (e.g., mood, immune response, digestion and heart rate). The microbiota-gut-brain axis is a bidirectional communication between the gut, its microbiome, and the nervous system. In the present review, the roles of microbiome in neuroendocrine and neuroimmune interactions have been discussed using naturally occurring isoflavones, particularly the phytoestrogen genistein, as there are sex differences in the interactions among the microbiome, hormones, immunity and disease susceptibility. A deep understanding of the mechanisms underlying the interactions among the endocrine modulators, brain, endocrine glands, gut immune cells, vagus nerve, enteric nervous system and gut microbiome will provide important knowledges that may ultimately lead to treatment and prevention of debilitating disorders characterized by deficits of microbiome-neuroendocrine-neuroimmune relationships.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Genisteína/farmacología , Animales , Tracto Gastrointestinal/fisiología , Humanos , Neuroinmunomodulación/efectos de los fármacos , Sistemas Neurosecretores
5.
J Immunotoxicol ; 15(1): 96-103, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29847185

RESUMEN

The immunotoxicant bisphenol A (BPA) may produce toxic effects on organs and systems, in part, by altering the secretion of cytokines and chemokines. However, systematic studies of the effects of BPA, let alone of its analogs and in cases when there are interactions with other chemicals, on innate immunity and cytokine modulation are limited. The objectives of this study were to investigate the immunomodulatory effects of: (1) BPA and its analogs, BPS and BPAF; and (2) the interaction between BPA and genistein (GEN), a partial estrogen agonist or antagonist. BPA, BPS, and BPAF were incubated with PMA-differentiated-U937 cells (a widely used cell line for primary human macrophages) at concentrations of 0, 0.1, 1, 10, 100 µM for up to 96 h. BPA (0, 0.1, 1, 10 µM) and GEN (0, 1, 10 µM) were also applied at various combinations. Cell viability and 30 cytokines/chemokines were measured. The results showed that the cell viability-inhibiting effect of these three bisphenols was BPAF > BPA > BPS. At 0.1 µM, BPA and BPAF generally increased the secretion of cytokines/chemokines, while BPS had minimal effects. All three bisphenols generally suppressed the secretion of cytokines/chemokines at 1 µM, while increased their secretion at 10 µM. The most increased cytokines/chemokines were interferon (IFN)-γ, interleukin (IL)-1RA, IL-8 and MIP-1ß, and the most decreased was IL-10. GEN increased cell viability at low BPA concentrations but had no effect when BPA levels were high. In general, GEN attenuated the BPA-induced secretion of cytokines/chemokines but enhanced it at low BPA concentrations. In conclusion, this study showed that BPA, BPS, and BPAF were immunotoxic to macrophages: BPS was the least toxic, while BPAF was the most toxic. Further, GEN reversed suppressive effects on macrophages that resulted from exposure to high concentrations of BPA and produced synergetic effects with BPA at low concentrations.


Asunto(s)
Contaminantes Ocupacionales del Aire/toxicidad , Compuestos de Bencidrilo/toxicidad , Genisteína/farmacología , Inflamación/inmunología , Macrófagos/efectos de los fármacos , Fenoles/toxicidad , Sulfonas/toxicidad , Supervivencia Celular , Quimiocinas/metabolismo , Citocinas/metabolismo , Interacciones Farmacológicas , Estrógenos/metabolismo , Humanos , Inmunidad Innata/efectos de los fármacos , Macrófagos/inmunología , Células U937
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA