RESUMEN
BACKGROUND: Educational attainment (EA) as a stable indicator of socioeconomic status has been confirmed to affect intracerebral hemorrhage (ICH), but the mechanism relating EA and ICH is still unknown. AIM: To explore the causal relationship between EA and ICH through a bidirectional and two-step Mendelian randomization (MR) study. METHODS: Using summary-level Genome-wide Association Study using GWAS data FROM CASES AND CONTROLS of European ancestry, we performed bidirectional and two-step MR analyses to explore the causal relationship between educational attainment and ICH to understand the mediating influence of risk factors in this process. We also carried out subgroup analysis according to the different sites (deep and lobar) of ICH. A set of sensitivity analyses were performed to test valid MR assumptions. RESULTS: Bidirectional MR analysis consistently demonstrated a unidirectional causal effect, revealing that higher EA had a protective influence on ICH. Each additional 1-standard deviation (SD) increase in genetically predicted years of schooling was associated with a reduced risk of all ICH (inverse variance weighted (IVW) OR: 0.381 [95 %CI: 0.264-0.549]), deep ICH (OR: 0.334 [95 %CI: 0.216-0.517]), and lobar ICH (OR: 0.422 [95 %CI: 0.261-0.682]). The mediating effect of EA on all ICH was mediated via systolic blood pressure (SBP) (6.93 % [1.20-13.45 %]) and body mass index (BMI) (17.87 % [3.92-34.64 %]), and the mediating effect of EA on deep ICH was also mediated via SBP (7.85 % [1.55-15.07 %]) and BMI (18.63 % [4.02-36.26 %]). CONCLUSION: This study provides robust genetic evidence for supporting the protective effect of EA on ICH risk, with further evidence that the effect of EA on deep ICH is partially mediated through hypertension and obesity. Further validation is needed to ascertain whether these findings are applicable to other racial or general population groups.
Asunto(s)
Hemorragia Cerebral , Escolaridad , Estudio de Asociación del Genoma Completo , Hipertensión , Análisis de la Aleatorización Mendeliana , Obesidad , Humanos , Hipertensión/genética , Hipertensión/fisiopatología , Hipertensión/diagnóstico , Hipertensión/epidemiología , Hemorragia Cerebral/genética , Factores de Riesgo , Medición de Riesgo , Obesidad/genética , Obesidad/epidemiología , Obesidad/diagnóstico , Predisposición Genética a la Enfermedad , Factores Protectores , Análisis de Mediación , Presión Sanguínea/genética , Fenotipo , Polimorfismo de Nucleótido Simple , Determinantes Sociales de la SaludRESUMEN
Nitrogen doped lutetium hydride has drawn global attention in the pursuit of room-temperature superconductivity near ambient pressure and temperature. However, variable synthesis techniques and uncertainty surrounding nitrogen concentration have contributed to extensive debate within the scientific community about this material and its properties. We used a solid-state approach to synthesize nitrogen doped lutetium hydride at high pressure and temperature (HPT) and analyzed the residual starting materials to determine its nitrogen content. High temperature oxide melt solution calorimetry determined the formation enthalpy of LuH1.96N0.02 (LHN) from LuH2 and LuN to be -28.4 ± 11.4 kJ/mol. Magnetic measurements indicated diamagnetism which increased with nitrogen content. Ambient pressure conductivity measurements observed metallic behavior from 5 to 350 K, and the constant and parabolic magnetoresistance changed with increasing temperature. High pressure conductivity measurements revealed that LHN does not exhibit superconductivity up to 26.6 GPa. We compressed LHN in a diamond anvil cell to 13.7 GPa and measured the Raman signal at each step, with no evidence of any phase transition. Despite the absence of superconductivity, a color change from blue to purple to red was observed with increasing pressure. Thus, our findings confirm the thermodynamic stability of LHN, do not support superconductivity, and provide insights into the origins of its diamagnetism.
RESUMEN
Molten salt reactors (MSRs) are a promising alternative to conventional nuclear reactors as they may offer more efficient fuel utilization, lower waste generation, and improved safety. The state of knowledge of the properties of liquid salts is far from complete. In order to develop the MSR concept, it is essential to develop a fundamental understanding of the thermodynamic properties, including the heat capacities (Cp) and enthalpies of mixing (ΔHmix), of molten salts at MSR operating conditions. Historically, the Cp values of molten salts were determined by drop-calorimetry or differential scanning calorimetry, whereas their ΔHmix values were typically measured using specialized high temperature calorimeters. In this work, a new methodology for measuring both the Cp and the ΔHmix of molten chloride salts was developed. This novel method involves sealing a chloride salt sample in a nickel capsule and performing conventional transposed temperature drop calorimetry using a commercially available Setaram AlexSYS-800 Tian-Calvet twin microcalorimeter. This methodology may be applied to calorimetric measurements of more complex salt mixtures, especially mixtures containing actinides and fission products.
RESUMEN
INTRODUCTION: Primary brainstem hemorrhage (PBSH) is the most fatal subtype of intracerebral hemorrhage and is associated with poor prognosis. We aimed to develop a prediction model for predicting 30-day mortality and functional outcome in patients with PBSH. METHODS: We reviewed records of 642 consecutive patients with first-time PBSH from three hospitals between 2016 and 2021. Multivariate logistic regression was used to establish a nomogram in a training cohort. Cutoff points of the variables were determined by receiver operating characteristic curve analysis, and certain points were assigned to these predictors to produce the PBSH score. The nomogram and PBSH score were compared with other scoring systems for PBSH. RESULTS: Five independent predictors, comprised of temperature, pupillary light reflex, platelet-to-lymphocyte ratio, Glasgow Coma Scale (GCS) score on admission, and hematoma volume, were incorporated to construct the nomogram. The PBSH score consisted of 4 independent factors with individual points assigned as follows: temperature, ≥38°C (=1 point), <38°C (=0 points); pupillary light reflex, absence (=1 point), presence (=0 points); GCS score 3-4 (=2 points), 5-11 (=1 point), and 12-15 (=0 points); PBSH volume >10 mL (=2 points), 5-10 mL (=1 point), and <5 mL (=0 points). Results showed that the nomogram was discriminative in predicting both 30-day mortality (area under the ROC curve [AUC] of 0.924 in the training cohort, and 0.931 in the validation cohort) and 30-day functional outcome (AUC of 0.887). The PBSH score was discriminative in predicting both 30-day mortality (AUC of 0.923 in the training cohort and 0.923 in the validation cohort) and 30-day functional outcome (AUC of 0.887). The prediction performances of the nomogram and the PBSH score were superior to the intracranial hemorrhage (ICH) score, primary pontine hemorrhage (PPH) score, and new PPH score. CONCLUSIONS: We developed and validated two prediction models for 30-day mortality and functional outcome in patients with PBSH. The nomogram and PBSH score could predict 30-day mortality and functional outcome in PBSH patients.
Asunto(s)
Hemorragia Cerebral , Hemorragias Intracraneales , Humanos , Hemorragia Cerebral/diagnóstico , Hemorragia Cerebral/terapia , Hemorragias Intracraneales/diagnóstico , Hemorragias Intracraneales/terapia , Curva ROC , Nomogramas , Estudios Retrospectivos , Tronco Encefálico , PronósticoRESUMEN
Uranium trichloride (UCl3) has received growing interest for its use in uranium-fueled molten salt reactors and in the pyrochemical processing of used fuel. In this paper, we report for the first time the experimentally determined Raman spectra of UCl3, at both ambient condition and in situ high temperatures up to 871 K. The frequencies of five of the Raman-active vibrational modes (vi) of UCl3 exhibit a negative temperature derivative ((∂νi/∂T)P) with increasing temperature. This red-shift behavior is likely due to the elongation of U-Cl bonds. The average isobaric mode Grüneisen parameter (γiP = 0.91 ± 0.02) of UCl3 was determined through use of the coefficient of thermal expansion published in Vogel et al. (2021) and the (∂νi/∂T)P values determined in this study. These results are in general agreement with those calculated here by density functional theory (DFT+U). Finally, a comparison of the ambient band positions of UCl3 to those of isostructural lanthanide (La-Eu) and actinide chlorides (Am-Cf) has been made.
RESUMEN
The structure of the uranyl aqua ion (UO22+) and a number of its inorganic complexes (specifically, UO2Cl+, UO2Cl20, UO2SO40, [Formula: see text] , [Formula: see text] and UO2OH42-) have been characterised using X-Ray absorption spectroscopy/extended X-Ray absorption fine structure (XAS/EXAFS) at temperatures ranging from 25 to 326 ºC. Results of ab initio molecular dynamics (MD) calculations are also reported for uranyl in chloride and sulfate-bearing fluids from 25 to 400 ºC and 600 bar to 20 kilobar (kb). These results are reported alongside a comprehensive review of prior structural characterisation work with particular focus given to EXAFS works to provide a consistent and up-to-date view of the structure of these complexes under conditions relevant to U mobility in ore-forming systems and around high-grade nuclear waste repositories. Regarding reported EXAFS results, average equatorial coordination was found to decrease in uranyl and its sulfate and chloride complexes as temperature rose - the extent of this decrease differed between species and solution compositions but typically resulted in an equatorial coordination number of â¼3-4 at temperatures above 200 ºC. The [Formula: see text] complex was observed at temperatures from 25 to 247 ºC and exhibited no major structural changes over this temperature range. UO2OH42- exhibited only minor structural changes over a temperature range from 88 to 326 ºC and was suggested to manifest fivefold coordination with four hydroxyl molecules and one water molecule around its equator. Average coordination values derived from fits of the reported EXAFS data were compared to average coordination values calculated using the experimentally derived thermodynamic data for chloride complexes reported by Dargent et al. (2013) and Migdisov et al. (2018b), and for sulfate complexes reported by Alcorn et al. (2019) and Kalintsev et al. (2019). Sulfate EXAFS data were well described by available thermodynamic data, and chloride EXAFS data were described well by the thermodynamic data of Migdisov et al. (2018b), but not by the data of Dargent et al. (2013). The ab initio molecular dynamics calculations confirmed the trends in equatorial coordination observed with EXAFS and were also able to provide an insight into the effect of pressure in equatorial water coordination - for a given temperature, higher pressures appear to lead to a greater number of equatorially bound waters counteracting the temperature effect.
RESUMEN
BACKGROUND: The centrosome is one of the most important non-membranous organelles regulating microtubule organization and progression of cell mitosis. The coiled-coil alpha-helical rod protein 1 (CCHCR1, also known as HCR) gene is considered to be a psoriasis susceptibility gene, and the protein is suggested to be localized to the P-bodies and centrosomes in mammalian cells. However, the exact cellular function of HCR and its potential regulatory role in the centrosomes remain unexplored. RESULTS: We found that HCR interacts directly with astrin, a key factor in centrosome maturation and mitosis. Immunoprecipitation assays showed that the coiled-coil region present in the C-terminus of HCR and astrin respectively mediated the interaction between them. Astrin not only recruits HCR to the centrosome, but also protects HCR from ubiquitin-proteasome-mediated degradation. In addition, depletion of either HCR or astrin significantly reduced centrosome localization of CEP72 and subsequent MCPH proteins, including CEP152, CDK5RAP2, and CEP63. The absence of HCR also caused centriole duplication defects and mitotic errors, resulting in multipolar spindle formation, genomic instability, and DNA damage. CONCLUSION: We conclude that HCR is localized and stabilized at the centrosome by directly binding to astrin. HCR are required for the centrosomal recruitment of MCPH proteins and centriolar duplication. Both HCR and astrin play key roles in keeping normal microtubule assembly and maintaining genomic stability.
Asunto(s)
Proteínas de Ciclo Celular , Centriolos , Animales , Centriolos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Centrosoma/metabolismo , Mitosis , Ubiquitinas/genética , Huso Acromático/metabolismo , MamíferosRESUMEN
Thermal stability and thermodynamic properties of aluminum(III)-1,3,5-benzenetricarboxylate (Al-BTC) metal-organic frameworks (MOFs), including MIL-96, MIL-100, and MIL-110, have been investigated through a suite of calorimetric and X-ray techniques. In situ high-temperature X-ray diffraction (HT-XRD) and thermogravimetric analysis coupled with differential scanning calorimetry (TGA-DSC) revealed that these MOFs undergo thermal amorphization prior to ligand combustion. Thermal stabilities of Al-BTC MOFs follow the increasing order MIL-110 < MIL-96 < MIL-100, based on estimated amorphization temperatures. Their thermodynamic stabilities were directly measured by high-temperature drop combustion calorimetry. Normalized (per mole of Al) enthalpies of formation (ΔH*f) of MIL-96, MIL-100, and MIL-110 from Al2O3, H3BTC, and H2O (only Al2O3 and H3BTC for MIL-100) were determined to be -56.9 ± 13.7, -36.2 ± 17.9, and 62.8 ± 11.6 kJ/mol·Al, respectively. Our results demonstrate that MIL-96 and MIL-100 are thermodynamically favorable, while MIL-110 is metastable, in agreement with thermal and hydrothermal stability trends. The enthalpic preferences of MIL-96 and MIL-100 may be attributed to their shared trinuclear µ3-oxo-bridged (Al3(µ3-O)) secondary building units (SBUs) promoting stabilization of Al polyhedra by the ligands within these frameworks, in comparison to the sterically strained Al8 octamer cluster cores formed in MIL-110. Furthermore, similar ΔH*f of MIL-96 and MIL-100 explain their concurrent formation as physical mixtures often encountered during synthesis, implying the importance of kinetic factors that may facilitate the formation of Al-BTC framework isomers. More importantly, the normalized formation enthalpies of Al-BTC MOF isomers follow a negative correlation with the ratio of charged coordinated substituents to linkers (normalized per mole of Al within the MOF formula unit), with enthalpic preference given to systems with smaller (O2- + OH-)/ligand ratios. This trend has been successfully extended to the previously measured ΔH*f of several Zn4O-based frameworks (e.g., MOF-5, MOF-5(DEF), MOF-177, UMCM-1), all of which have been found to be metastable with respect to their dense phases (ZnO, H2O, and ligands). The result suggests that carboxylate MOFs with higher metal coordination environments attain more enthalpic stabilization from the coordinated ligands. Thus, the formation of some lanthanide/actinide, transition metal, and main group carboxylate frameworks may be energetically more favored, which, however, requires further studies.
RESUMEN
BACKGROUND: Hexokinase 2 (HK2) is an enzyme that catalyses the conversion of glucose to glucose-6-phosphate, which has been found to be associated with malignant tumour growth. However, the potential immunological and clinical significance of HK2, especially in terms of prognostic prediction for patients with glioma, has not been fully elucidated. METHODS: To investigate the expression, immunological and clinical significance of HK2 in patients with glioma, several databases, including ONCOMINE, TIMER2.0, GEPIA, CGGA, UCSC, LinkedOmics, Metascape, STRING, GSCA, and TISIDB, as well as biochemical, cellular, and pathological analyses, were used in this study. In addition, we performed univariate, multivariate Cox regression and nomogram analyses of the hub genes positively and negatively correlated with HK2 to explore the potential regulatory mechanism in the initiation and development of glioma. RESULTS: Our results demonstrated that HK2 was highly expressed in most malignant cancers. HK2 expression was significantly higher in lower grade glioma (LGG) and glioblastoma (GBM) than in adjacent normal tissue. In addition, HK2 expression was significantly correlated with clinical parameters, histological manifestations, and prognosis in glioma patients. Specifically, the data from The Cancer Genome Atlas downloaded from UCSC Xena database analysis showed that high expression of HK2 was strongly associated with poor prognosis in glioma patients. The LinkedOmics database indicated that HK2-related genes were mainly enriched in immune-related cells. In LGG and GBM tissues, HK2 expression is usually correlated with recognized immune checkpoints and the abundance of multiple immune infiltrates. Similarly, the Metascape database revealed that HK2-related genes were mainly enriched and annotated in immune-related pathways and immune cells. Further investigations also confirmed that the inhibition of HK2 expression remarkably suppressed metastasis and vasculogenic mimicry (VM) formation in glioma cells through regulating the gene expression of inflammatory and immune modulators. CONCLUSION: HK2 expression was closely associated with the malignant properties of glioma through activating multiple immune-related signalling pathways to regulate immune responses and the infiltration of immune cells. Thus, HK2 and its hub genes may be a potential target for the treatment of glioma.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Hexoquinasa/metabolismo , Neoplasias Encefálicas/patología , Glioma/patología , Hexoquinasa/genética , Humanos , PronósticoRESUMEN
MXenes are ultra-thin two-dimensional layered early transition-metal carbides and nitrides with potential applications in various emerging technologies, such as energy storage, water purification, and catalysis. MXenes are synthesized from the parent MAX phases with different etching agents [hydrofluoric acid (HF) or fluoride salts with a strong acid] by selectively removing a more weakly bound crystalline layer of Al or Ga replaced by surface groups (-O, -F, -OH, etc.). Ti3C2Tx MXene synthesized by CoF2/HCl etching has layered heterogeneity due to intercalated Al3+ and Co2+ that act as pillars for interlayer spacings. This study investigates the impacts of etching environments on the compositional, interfacial, structural, and thermodynamic properties of Ti3C2Tx MXenes. Specifically, compared with HF/HCl etching, CoF2/HCl treatment leads to a Ti3C2Tx MXene with a broader distribution of interlayer distances, increased number of intercalated cations, and decreased degree of hydration. Moreover, we determine the enthalpies of formation at 25 °C (ΔHf,25°C) of Ti3C2Tx MXenes etched with CoF2/HCl, ΔHf,25°C = -1891.7 ± 35.7 kJ/mol Ti3C2, and etched with HF/HCl, ΔHf,25°C = -1978.2 ± 35.7 kJ/mol Ti3C2, using high-temperature oxidation drop calorimetry. These energetic data are discussed and compared with experimentally derived and computationally predicted values to elucidate the effects of intercalants and surface groups of MXenes. We find that MXenes with intercalated metal cations have a less exothermic ΔHf,25°C from an increase in the interlayer space and dimension heterogeneity and a decrease in the degree of hydration leading to reduced layer-layer van der Waals interactions and weakened hydration effects applied on the MXene layers. The outcomes of this study further our understanding of MXene's energetic-structural-interfacial property relationships.
RESUMEN
Noble gas transport through geologic media has important applications in the characterization of underground nuclear explosions (UNEs). Without accurate transport models, it is nearly impossible to distinguish between xenon signatures originating from civilian nuclear facilities and UNEs. Understanding xenon transport time through the earth is a key parameter for interpreting measured xenon isotopic ratios. One of the most challenging aspects of modeling gas transport time is accounting for the effect of variable water saturation of geological media. In this study, we utilize bench-scale laboratory experiments to characterize the diffusion of krypton, xenon, and sulfur hexafluoride (SF6) through intact zeolitic tuff under different saturations. We demonstrate that the water in rock cores with low partial saturation dramatically affects xenon transport time compared to that of krypton and SF6 by blocking sites in zeolitic tuff that preferentially adsorb xenon. This leads to breakthrough trends that are strongly influenced by the degree of the rock saturation. Xenon is especially susceptible to this phenomenon, a finding that is crucial to incorporate in subsurface gas transport models used for nuclear event identification. We also find that the breakthrough of SF6 diverges significantly from that of noble gases within our system. When developing field scale models, it is important to understand how the behavior of xenon deviates from chemical tracers used in the field, such as SF6 (Carrigan et al., 1996). These new insights demonstrate the critical need to consider the interplay between rock saturation and fission product sorption during transport modeling, and the importance of evaluating specific interactions between geomedia and gases of interest, which may differ from geomedia interactions with chemical tracers.
RESUMEN
Cystatin C (CysC) has been found to be associated with hemorrhagic and ischemic stroke in many studies. However, the association between CysC level and the risk of delayed cerebral ischemia after endovascular treatment of aneurysmal subarachnoid hemorrhage has been reported rarely. Our study was proposed to explore this association. Consecutive patients from June 2015 to February 2021 in this single-center retrospective study were selected. Univariate and multivariate analyses were used to identify potential prognostic risk factors for delayed cerebral ischemia, and the stability of the association was demonstrated by several statistical methods, such as subgroup analysis, interaction testing, generalized linear models, and propensity score matching. A total of 424 patients were included in the analysis. Cystatin C was independently associated with delayed cerebral ischemia. The independent effects of CysC on delayed cerebral ischemia were shown in generalized linear models with a logit link, and the results were relatively stable in crude, partial, and full models with ORs (95% CIs) for delayed cerebral ischemia. Subgroup analysis showed no significant subgroup differences in the effect of CysC on delayed cerebral ischemia. There was also no interaction effect between CysC and other confounders. Patients in the high CysC group had a higher risk of delayed cerebral ischemia than those in the low CysC group before and after propensity score matching. CysC level could be an independent predictor for the risk of delayed cerebral ischemia after endovascular treatment of aneurysmal subarachnoid hemorrhage.
Asunto(s)
Isquemia Encefálica , Cistatina C , Hemorragia Subaracnoidea , Isquemia Encefálica/metabolismo , Estudios de Casos y Controles , Infarto Cerebral , Cistatina C/metabolismo , Humanos , Estudios Retrospectivos , Hemorragia Subaracnoidea/metabolismoRESUMEN
Metal halide perovskites possess unique atomic and electronic configurations that endow them with high defect tolerance and enable high-performance photovoltaics and optoelectronics. Perovskite light-emitting diodes have achieved an external quantum efficiency of over 20%. Despite tremendous progress, fundamental questions remain, such as how structural distortion affects the optical properties. Addressing their relationships is considerably challenging due to the scarcity of effective diagnostic tools during structural and property tuning as well as the limited tunability achievable by conventional methods. Here, using pressure and chemical methods to regulate the metal off-centering distortion, we demonstrate the giant tunability of photoluminescence (PL) in both the intensity (>20 times) and wavelength (>180 nm/GPa) in the highly distorted halide perovskites [CH3NH3GeI3, HC(NH2)2GeI3, and CsGeI3]. Using advanced in situ high-pressure probes and first-principles calculations, we quantitatively reveal a universal relationship whereby regulating the level of off-centering distortion towards 0.2 leads to the best PL performance in the halide perovskites. By applying this principle, intense PL can still be induced by substituting CH3NH3 + with Cs+ to control the distortion in (CH3NH3)1-xCsxGeI3, where the chemical substitution plays a similar role as external pressure. The compression of a fully substituted sample of CsGeI3 further tunes the distortion to the optimal value at 0.7 GPa, which maximizes the emission with a 10-fold enhancement. This work not only demonstrates a quantitative relationship between structural distortion and PL property of the halide perovskites but also illustrates the use of knowledge gained from high-pressure research to achieve the desired properties by ambient methods.
RESUMEN
Ti3C2Tx MXene is a member of the recently discovered two-dimensional early transition metal carbide and nitride family of MXenes with potential applications in energy storage and heterogeneous catalysis at elevated temperatures. Here, we apply a suite of in situ techniques to probe Ti3C2Tx MXene's thermal evolutions, including in situ X-ray diffraction (XRD), in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and integrated thermogravimetry-differential scanning calorimetry-mass spectrometry (TG-DSC-MS). In light of this set of in situ investigations, we find heterogeneity in the layering of Ti3C2Tx MXene revealed only at higher temperatures. Our findings present behavior up to 600 °C, particularly interlayer water and -OH surface end-capping groups. In one group of layers, their interlayer spacing shrinks as water deintercalates, but the other group of layers unexpectedly shows no change in the interlayer spacing. This is strong evidence that intercalants act as guest pillaring agents in the latter layering group, which stabilize these layers at higher temperatures while keeping the interlayer space accessible.
RESUMEN
Ligand-binding assay (LBA) and LC-MS have been the preferred bioanalytical techniques for the quantitation and biotransformation assessment of various therapeutic modalities. This review provides an overview of the applications of LBA, LC-MS/MS and LC-HRMS for the bioanalysis of complex protein therapeutics including antibody-drug conjugates, fusion proteins and PEGylated proteins as well as oligonucleotide therapeutics. The strengths and limitations of LBA and LC-MS, along with some guidelines on the choice of appropriate bioanalytical technique(s) for the bioanalysis of these therapeutic modalities are presented. With the discovery of novel and more complex therapeutic modalities, there is an increased need for the biopharmaceutical industry to develop a comprehensive bioanalytical strategy integrating both LBA and LC-MS.
Asunto(s)
Bioensayo , Oligonucleótidos/química , Proteínas/química , Sitios de Unión , Cromatografía Liquida , Humanos , Ligandos , Espectrometría de Masas , Oligonucleótidos/uso terapéuticoRESUMEN
Orthosilicates adopt the zircon structure types (I41/amd), consisting of isolated SiO4 tetrahedra joined by A-site metal cations, such as Ce and U. They are of significant interest in the fields of geochemistry, mineralogy, nuclear waste form development, and material science. Stetindite (CeSiO4) and coffinite (USiO4) can be formed under hydrothermal conditions despite both being thermodynamically metastable. Water has been hypothesized to play a significant role in stabilizing and forming these orthosilicate phases, though little experimental evidence exists. To understand the effects of hydration or hydroxylation on these orthosilicates, in situ high-temperature synchrotron and laboratory-based X-ray diffraction was conducted from 25 to â¼850 °C. Stetindite maintains its I41/amd symmetry with increasing temperature but exhibits a discontinuous expansion along the a-axis during heating, presumably due to the removal of water confined in the [001] channels, which shrink against thermal expansion along the a-axis. Additional in situ high-temperature Raman and Fourier transform infrared spectroscopy also confirmed the presence of the confined water. Coffinite was also found to expand nonlinearly up to 600 °C and then thermally decompose into a mixture of UO2 and SiO2. A combination of dehydration and dehydroxylation is proposed for explaining the thermal behavior of coffinite synthesized hydrothermally. Additionally, we investigated high-temperature structures of two coffinite-thorite solid solutions, uranothorite (UxTh1-xSiO4), which displayed complex variations in composition during heating that was attributed to the negative enthalpy of mixing. Lastly, for the first time, the coefficients of thermal expansion of CeSiO4, USiO4, U0.46Th0.54SiO4, and U0.9Th0.1SiO4 were determined to be αV = 14.49 × 10-6, 14.29 × 10-6, 17.21 × 10-6, and 17.23 × 10-6 °C-1, respectively.
RESUMEN
Quantitative understanding of uranium transport by high temperature fluids is crucial for confident assessment of its migration in a number of natural and artificially induced contexts, such as hydrothermal uranium ore deposits and nuclear waste stored in geological repositories. An additional recent and atypical context would be the seawater inundated fuel of the Fukushima Daiichi Nuclear Power Plant. Given its wide applicability, understanding uranium transport will be useful regardless of whether nuclear power finds increased or decreased adoption in the future. The amount of uranium that can be carried by geofluids is enhanced by the formation of complexes with inorganic ligands. Carbonate has long been touted as a critical transporting ligand for uranium in both ore deposit and waste repository contexts. However, this paradigm has only been supported by experiments conducted at ambient conditions. We have experimentally evaluated the ability of carbonate-bearing fluids to dissolve (and therefore transport) uranium at high temperature, and discovered that in fact, at temperatures above 100 °C, carbonate becomes almost completely irrelevant as a transporting ligand. This demands a re-evaluation of a number of hydrothermal uranium transport models, as carbonate can no longer be considered key to the formation of uranium ore deposits or as an enabler of uranium transport from nuclear waste repositories at elevated temperatures.
RESUMEN
Following the Fukushima Daiichi accident, significant efforts from industry and the scientific community have been directed towards the development of alternative nuclear reactor fuels with enhanced accident tolerance. Among the proposed materials for such fuels is a uranium silicide compound (U3Si2), which has been selected for its enhanced thermal conductivity and high density of uranium compared to the reference commercial light water reactor (LWR) nuclear fuel, uranium oxide (UO2). To be a viable candidate LWR fuel, however, U3Si2 must also demonstrate that, in the event of this fuel coming in contact with aqueous media, it will not degrade rapidly. In this contribution, we report the results of experiments investigating the stability of U3Si2 in pressurized water at elevated temperatures and identify the mechanisms that control the interaction of U3Si2 under these conditions. Our data indicate that the stability of this material is primarily controlled by the formation of a layer of USiO4 (the mineral, coffinite) at the surface of U3Si2. The results also show that these layers are destabilized at T > 300 °C, leading to the complete decomposition of U3Si2 and its pulverization due to its full oxidation to UO2.