Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 215
Filtrar
1.
Redox Biol ; 64: 102767, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37290302

RESUMEN

BACKGROUND: Necroptosis and pyroptosis, two types of proinflammatory programmed cell death, were recently found to play important roles in spinal cord injury (SCI). Moreover, cyclic helix B peptide (CHBP) was designed to maintain erythropoietin (EPO) activity and protect tissue against the adverse effects of EPO. However, the protective mechanism of CHBP following SCI is still unknown. This research explored the necroptosis- and pyroptosis-related mechanism underlying the neuroprotective effect of CHBP after SCI. METHODS: Gene Expression Omnibus (GEO) datasets and RNA sequencing were used to identify the molecular mechanisms of CHBP for SCI. A mouse model of contusion SCI was constructed, and HE staining, Nissl staining, Masson staining, footprint analysis and the Basso Mouse Scale (BMS) were applied for histological and behavioural analyses. qPCR, Western blot analysis, immunoprecipitation and immunofluorescence were utilized to analyse the levels of necroptosis, pyroptosis, autophagy and molecules associated with the AMPK signalling pathway. RESULTS: The results revealed that CHBP significantly improved functional restoration, elevated autophagy, suppressed pyroptosis, and mitigated necroptosis after SCI. 3-Methyladenine (3-MA), an autophagy inhibitor, attenuated these beneficial effects of CHBP. Furthermore, CHBP-triggered elevation of autophagy was mediated by the dephosphorylation and nuclear translocation of TFEB, and this effect was due to stimulation of the AMPK-FOXO3a-SPK2-CARM1 and AMPK-mTOR signalling pathways. CONCLUSION: CHBP acts as a powerful regulator of autophagy that improves functional recovery by alleviating proinflammatory cell death after SCI and thus might be a prospective therapeutic agent for clinical application.


Asunto(s)
Péptidos Cíclicos , Traumatismos de la Médula Espinal , Ratones , Animales , Péptidos Cíclicos/farmacología , Péptidos Cíclicos/uso terapéutico , Proteínas Quinasas Activadas por AMP/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/metabolismo , Apoptosis , Transducción de Señal , Autofagia
2.
Theranostics ; 13(2): 810-832, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36632211

RESUMEN

Background: Caloric restriction mimetics (CRMs) mimic the favourable effects of caloric restriction (CR) and have been shown to have therapeutic effects in neuroinflammatory disease. However, whether CRMs improve the functional recovery from spinal cord injury (SCI) and the underlying mechanism of action remain unclear. In this study, we used the CRMs 3,4-dimethoxychalcone (3,4-DC) to evaluate the therapeutic value of CRMs for SCI. Methods: HE, Masson and Nissl staining; footprint analysis; and the Basso mouse scale were used to determine the functional recovery from SCI after 3,4-DC treatment. RNA sequencing was used to identify the mechanisms of 3,4-DC in SCI. Western blotting, qPCR and immunofluorescence were used to detect the levels of pyroptosis, necroptosis, autophagy and the AMPK-TRPML1-calcineurin signalling pathway. We employed a dual-luciferase reporter assay in vitro and applied AAV vectors to inhibit TFEB in vivo to explore the mechanism of 3,4-DC. Results: 3,4-DC reduced glial scar area and motor neuron death and improved functional recovery after SCI. RNA-sequencing results indicated that oxidative stress, pyroptosis, necroptosis, and autophagy may be involved in the ability of 3,4-DC to improve functional recovery. Furthermore, 3,4-DC inhibited pyroptosis and necroptosis by enhancing autophagy. We also found that 3,4-DC enhances autophagy by promoting TFEB activity. A decrease in the TFEB level abolished the protective effect of 3,4-DC. In addition, 3,4-DC partially regulated TFEB activity through the AMPK-TRPML1-calcineurin signalling pathway. Conclusions: 3,4-DC promotes functional recovery by upregulating TFEB-mediated autophagy and inhibiting pyroptosis and necroptosis after SCI, which may have potential clinical application value.


Asunto(s)
Restricción Calórica , Necroptosis , Piroptosis , Traumatismos de la Médula Espinal , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia , Calcineurina/metabolismo , Necroptosis/efectos de los fármacos , Piroptosis/efectos de los fármacos , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/patología
3.
J Nanobiotechnology ; 20(1): 220, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36310171

RESUMEN

BACKGROUND: Glucocorticoids (GCs) overuse is associated with decreased bone mass and osseous vasculature destruction, leading to severe osteoporosis. Platelet lysates (PL) as a pool of growth factors (GFs) were widely used in local bone repair by its potent pro-regeneration and pro-angiogenesis. However, it is still seldom applied for treating systemic osteopathia due to the lack of a suitable delivery strategy. The non-targeted distribution of GFs might cause tumorigenesis in other organs. RESULTS: In this study, PL-derived exosomes (PL-exo) were isolated to enrich the platelet-derived GFs, followed by conjugating with alendronate (ALN) grafted PEGylated phospholipid (DSPE-PEG-ALN) to establish a bone-targeting PL-exo (PL-exo-ALN). The in vitro hydroxyapatite binding affinity and in vivo bone targeting aggregation of PL-exo were significantly enhanced after ALN modification. Besides directly modulating the osteogenic and angiogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and endothelial progenitor cells (EPCs), respectively, PL-exo-ALN also facilitate their coupling under GCs' stimulation. Additionally, intravenous injection of PL-exo-ALN could successfully rescue GCs induced osteoporosis (GIOP) in vivo. CONCLUSIONS: PL-exo-ALN may be utilized as a novel nanoplatform for precise infusion of GFs to bone sites and exerts promising therapeutic potential for GIOP.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Osteoporosis , Humanos , Exosomas/metabolismo , Glucocorticoides/metabolismo , Células Madre Mesenquimatosas/metabolismo , Osteogénesis , Osteoporosis/inducido químicamente , Osteoporosis/tratamiento farmacológico , Alendronato/farmacología
4.
Cell Death Discov ; 8(1): 209, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440086

RESUMEN

Intervertebral disc degeneration (IVDD) is a chronic age-related degenerative disease accompanied by complex pathophysiological mechanisms. Increasing evidence indicates that NLRP3 inflammasome mediated pyroptosis of nucleus pulposus (NP) cells displays an important role in the pathological progression of IVDD. Milk fat globule-EGF factor-8 (MFG-E8) is an endogenously secreted glycoprotein with beneficial effects of anti-inflammatory, antioxidant, and modulation of NLRP3 inflammasome. However, the effect of MFG-E8 on IVDD remains unclear. In this study, our purpose is to clarify the expression changes of MFG-E8 in the IVDD process and explore the role and mechanism of MFG-E8. We found that MFG-E8's expression was reduced in degraded nucleus pulposus tissues of humans and rats as well as hydrogen peroxide (H2O2)-treated NP cells. Exogenous supplementation of MFG-E8 could rescue H2O2-induced oxidative stress, mitochondrial dysfunction, and NLRP3 inflammasome activation and protect NP cells from pyroptosis and extracellular matrix (ECM) degradation. Mechanistically, Nrf2/TXNIP/NLRP3 axis plays a crucial role in MFG-E8-mediated suppression of the above-pathological events. In vivo, we established a rat intervertebral disc acupuncture model and found that MFG-E8 administration effectively alleviated IVDD development by imageological and histomorphological evaluation. Overall, our findings revealed the internal mechanisms underlying MFG-E8 regulation in NP cells and its intrinsic value for IVDD therapy.

5.
Bone Res ; 10(1): 30, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35296645

RESUMEN

Vascular regeneration is a challenging topic in tissue repair. As one of the important components of the neurovascular unit (NVU), pericytes play an essential role in the maintenance of the vascular network of the spinal cord. To date, subtypes of pericytes have been identified by various markers, namely the PDGFR-ß, Desmin, CD146, and NG2, each of which is involved with spinal cord injury (SCI) repair. In addition, pericytes may act as a stem cell source that is important for bone development and regeneration, whilst specific subtypes of pericyte could facilitate bone fracture and defect repair. One of the major challenges of pericyte biology is to determine the specific markers that would clearly distinguish the different subtypes of pericytes, and to develop efficient approaches to isolate and propagate pericytes. In this review, we discuss the biology and roles of pericytes, their markers for identification, and cell differentiation capacity with a focus on the potential application in the treatment of SCI and bone diseases in orthopedics.

8.
Autophagy ; 18(8): 1841-1863, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34872436

RESUMEN

Necrosis that appears at the ischemic distal end of random-pattern skin flaps increases the pain and economic burden of patients. Necroptosis is thought to contribute to flap necrosis. Lysosomal membrane permeabilization (LMP) plays an indispensable role in the regulation of necroptosis. Nonetheless, the mechanisms by which lysosomal membranes become leaky and the relationship between necroptosis and lysosomes are still unclear in ischemic flaps. Based on Western blotting, immunofluorescence, enzyme-linked immunosorbent assay, and liquid chromatography-mass spectrometry (LC-MS) analysis results, we found that LMP was presented in the ischemic distal portion of random-pattern skin flaps, which leads to disruption of lysosomal function and macroautophagic/autophagic flux, increased necroptosis, and aggravated necrosis of the ischemic flaps. Moreover, bioinformatics analysis of the LC-MS results enabled us to focus on the role of PLA2G4E/cPLA2 (phospholipase A2, group IVE) in LMP of the ischemic flaps. In vivo inhibition of PLA2G4E with an adeno-associated virus vector attenuated LMP and necroptosis, and promoted flap survival. In addition, microRNA-seq helped us determine that Mir504-5p was differentially expressed in ischemic flaps. A string of in vitro and in vivo tests was employed to verify the inhibitory effect of Mir504-5p on PLA2G4E, LMP and necroptosis. Finally, we concluded that the inhibition of PLA2G4E by Mir504-5p reduced LMP-induced necroptosis, thereby promoting the survival of random-pattern skin flaps.Abbreviations: AAV: adeno-associated virus; ACTA2/α;-SMA: actin alpha 2, smooth muscle, aorta; ALOX15/12/15-LOX: arachidonate 15- lipoxygenase; c-CASP8: cleaved caspase; c-CASP3: cleaved caspase 3; CTSD: cathepsin D; CTSB: cathepsin B; CTSL: cathepsin L; DMECs: primary mouse dermal microvascular endothelial cells; ELISA: enzyme-linked immunosorbent assay; F-CHP: 5-FAM-conjugated collagen hybridizing peptide; FISH: fluorescence in situ hybridization; HUVECs: human umbilical vein endothelial cells; LAMP1: lysosomal-associated membrane protein 1; LAMP2: lysosomal-associated membrane protein 2; LC-MS: liquid chromatography-mass spectrometry; LDBF: laser doppler blood flow; LMP: lysosomal membrane permeabilization; LPE: lysophosphatidylethanolamine; LPC: lysophosphatidylcholine; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MLKL: mixed lineage kinase domain-like; NDI: N-dodecylimidazole; PECAM1/CD31: platelet/endothelial cell adhesion molecule 1; PLA2G4A/cPLA2: phospholipase A2, group IVA (cytosolic, calcium-dependent); PLA2G4E/cPLA2: phospholipase A2, group IVE; qPCR: quantitative real-time polymerase chain reaction; RIPK1: receptor (TNFRSF)-interacting serine-threonine kinase 1; RIPK3: receptor-interacting serine-threonine kinase 3; RISC: RNA-induced silencing complex; ROS: reactive oxygen species; shRNA: short hairpin RNA; SQSTM1: sequestosome 1; TBHP: tert-butyl hydroperoxide; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labelling.


Asunto(s)
Autofagia , MicroARNs , Animales , Fosfolipasas A2 Grupo IV/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Hibridación Fluorescente in Situ , Lisosomas/metabolismo , Ratones , MicroARNs/metabolismo , Necroptosis , Necrosis/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo
9.
Orthop Surg ; 14(2): 443-450, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34914198

RESUMEN

This study sought to investigate and evaluate a modified axial translaminar screw fixation for treating odontoid fractures. We performed a retrospective study at Wenzhou Medical University Affiliated Second Hospital between March 2016 and June 2018. We retrospectively collected and analyzed the medical records of 23 cases with odontoid fractures. All patients were identified as type II odontoid fractures without neurological deficiency and serious diseases following the classification of Anderson. The average age, gender ratio, and body mass index (BMI) were 54.3 ± 11.1 years, 12 men to 11 women, and 22.6 ± 2.4 kg/m2 , respectively. Patients in this study accepted screw fixation using our modified axial translaminar screw fixation combined with atlas pedicle or lateral mass screw fixation. Within the technique, a small cortical "window" was dug in the middle of the axial contralateral lamina, such that the screws in the lamina were visualized to prevent incorrectly implanting the posterior spinal canal through the visualized "window." A total of 46 bone screws were accurately inserted into the axial lamina without using fluoroscopy. The length of all translaminar screws ranged between 26 and 30 mm, while the diameter was 3.5 mm. During the follow-up survey, the visual analog scale (VAS) and neck disability index (NDI) were measured. We provide a simple modification of Wright's elegant technique with the addition of "visualized windows" at the middle of the axial lamina. In all patients, screws were inserted accurately without bony breach and the screw angle was 56.1 ± 3.0°. Mean operative time was 102 ± 28 min with an average blood loss of 50 ± 25 mL. Postoperative hemoglobin and mean length of hospital stay were 12.0 ± 1.4 g/dL and 10.4 ± 3.4 days, respectively. The average follow-up time of all cases was 14.7 months and no internal fixation displacement, loosening, or breakage was found. All patients with odontoid fractures reported being satisfied with the treatment during the recheck period and good clinical outcomes were observed. At 1, 6, and 12 months, NDI and VAS showed that the symptoms of neck pain and limitations of functional disability improved significantly during follow-up. Our results suggest that the modified translaminar screw fixation technique can efficiently treat Anderson type II odontoid fracture, followed by the benefits of less soft tissue dissection, simple operation, no fluoroscopy, and accurate placement of screws.


Asunto(s)
Apófisis Odontoides , Fracturas de la Columna Vertebral , Fusión Vertebral , Adulto , Anciano , Tornillos Óseos , Femenino , Fijación Interna de Fracturas/métodos , Humanos , Masculino , Persona de Mediana Edad , Apófisis Odontoides/diagnóstico por imagen , Apófisis Odontoides/lesiones , Apófisis Odontoides/cirugía , Estudios Retrospectivos , Fracturas de la Columna Vertebral/diagnóstico por imagen , Fracturas de la Columna Vertebral/cirugía , Fusión Vertebral/métodos , Resultado del Tratamiento
13.
Oxid Med Cell Longev ; 2021: 8898996, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336117

RESUMEN

Spinal cord injury (SCI) is a major cause of irreversible nerve injury and leads to serious tissue loss and neurological dysfunction. Thorough investigation of cellular mechanisms, such as autophagy, is crucial for developing novel and effective therapeutics. We administered trehalose, an mTOR-independent autophagy agonist, in SCI rats suffering from moderate compression injury to elucidate the relationship between autophagy and SCI and evaluate trehalose's therapeutic potential. 60 rats were divided into 4 groups and were treated with either control vehicle, trehalose, chloroquine, or trehalose + chloroquine 2 weeks prior to administration of moderate spinal cord crush injury. 20 additional sham rats were treated with control vehicle. H&E staining, Nissl staining, western blot, and immunofluorescence studies were conducted to examine nerve morphology and quantify autophagy and mitochondrial-dependent apoptosis at various time points after surgery. Functional recovery was assessed over a period of 4 weeks after surgery. Trehalose promotes autophagosome recruitment via an mTOR-independent pathway, enhances autophagy flux in neurons, inhibits apoptosis via the intrinsic mitochondria-dependent pathway, reduces lesion cavity expansion, decreases neuron loss, and ultimately improves functional recovery following SCI (all p < 0.05). Furthermore, these effects were diminished upon administration of chloroquine, an autophagy flux inhibitor, indicating that trehalose's beneficial effects were due largely to activation of autophagy. This study presents new evidence that autophagy plays a critical neuroprotective and neuroregenerative role in SCI, and that mTOR-independent activation of autophagy with trehalose leads to improved outcomes. Thus, trehalose has great translational potential as a novel therapeutic agent after SCI.


Asunto(s)
Autofagia/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/uso terapéutico , Traumatismos de la Médula Espinal/tratamiento farmacológico , Trehalosa/uso terapéutico , Animales , Supervivencia Celular , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Wistar , Transducción de Señal , Trehalosa/farmacología
15.
Front Cell Dev Biol ; 9: 643996, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33898433

RESUMEN

Increasing evidence indicates that pyroptosis, a new type of programmed cell death, may participate in random flap necrosis and play an important role. ROS-induced lysosome malfunction is an important inducement of pyroptosis. Transcription factor E3 (TFE3) exerts a decisive effect in oxidative metabolism and lysosomal homeostasis. We explored the effect of pyroptosis in random flap necrosis and discussed the effect of TFE3 in modulating pyroptosis. Histological analysis via hematoxylin-eosin staining, immunohistochemistry, general evaluation of flaps, evaluation of tissue edema, and laser Doppler blood flow were employed to determine the survival of the skin flaps. Western blotting, immunofluorescence, and enzyme-linked immunosorbent assays were used to calculate the expressions of pyroptosis, oxidative stress, lysosome function, and the AMPK-MCOLN1 signaling pathway. In cell experiments, HUVEC cells were utilized to ensure the relationship between TFE3, reactive oxygen species (ROS)-induced lysosome malfunction and cell pyroptosis. Our results indicate that pyroptosis exists in the random skin flap model and oxygen and glucose deprivation/reperfusion cell model. In addition, NLRP3-mediated pyroptosis leads to necrosis of the flaps. Moreover, we also found that ischemic flaps can augment the accumulation of ROS, thereby inducing lysosomal malfunction and finally initiating pyroptosis. Meanwhile, we observed that TFE3 levels are interrelated with ROS levels, and overexpression and low expression of TFE3 levels can, respectively, inhibit and promote ROS-induced lysosomal dysfunction and pyroptosis during in vivo and in vitro experiments. In conclusion, we found the activation of TFE3 in random flaps is partially regulated by the AMPK-MCOLN1 signal pathway. Taken together, TFE3 is a key regulator of ROS-induced pyroptosis in random skin flaps, and TFE3 may be a promising therapeutic target for improving random flap survival.

16.
Mol Med Rep ; 23(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33760181

RESUMEN

MicroRNAs (miRNAs) perform a variety of important cellular functions, including regulating the cell cycle, apoptosis and differentiation, amongst others. Recent research has demonstrated an essential function performed by miRNAs in regulating pyroptosis, which is a type of programmed cell death associated with inflammatory responses that plays a critical role in numerous diseases. Through direct or indirect action on proteins associated with the pyroptosis signaling pathway, miRNAs are involved in the pathological processes of cardiovascular, kidney and immune diseases, among others. The present review discusses the maturation process of miRNAs and the process of pyroptosis, with a specific focus on the transport of miRNAs to damaged cells via exosomes, shedding vesicles and protein stabilized complexes, as well as the role of different miRNAs in the regulation of pyroptosis through different gene and protein targets. The aim of the present review was to provide a novel insight into the regulatory role of miRNAs in pyroptosis and new treatment options for pyroptosis­associated diseases.


Asunto(s)
Exosomas/genética , Inflamación/genética , MicroARNs/genética , Piroptosis/genética , Apoptosis/genética , Diferenciación Celular/genética , Humanos , Transducción de Señal/genética
17.
Cell Death Dis ; 12(3): 274, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33723238

RESUMEN

Neural stem cell (NSCs) transplantation has been one of the hot topics in the repair of spinal cord injury (SCI). Fibroblast growth factor (FGF) is considered a promising nerve injury therapy after SCI. However, owing to a hostile hypoxia condition in SCI, there remains a challenging issue in implementing these tactics to repair SCI. In this report, we used adeno-associated virus 2 (AAV2), a prototype AAV used in clinical trials for human neuron disorders, basic FGF (bFGF) gene under the regulation of hypoxia response element (HRE) was constructed and transduced into NSCs to yield AAV2-5HRE-bFGF-NSCs. Our results showed that its treatment yielded temporally increased expression of bFGF in SCI, and improved scores of functional recovery after SCI compared to vehicle control (AAV2-5HRE-NSCs) based on the analyses of the inclined plane test, Basso-Beattie-Bresnahan (BBB) scale and footprint analysis. Mechanistic studies showed that AAV2-5HRE-bFGF-NSCs treatment increased the expression of neuron-specific neuronal nuclei protein (NeuN), neuromodulin GAP43, and neurofilament protein NF200 while decreased the expression of glial fibrillary acidic protein (GFAP) as compared to the control group. Further, the expressions of autophagy-associated proteins LC3-II and Beclin 1 were decreased, whereas the expression of P62 protein was increased in AAV2-5HRE-bFGF-NSCs treatment group. Taken together, our data indicate that AAV2-5HRE-bFGF-NSCs treatment improved the recovery of SCI rats, which is accompanied by evidence of nerve regeneration, and inhibition of SCI-induced glial scar formation and cell autophagy. Thus, this study represents a step forward towards the potential use of AAV2-5HRE-bFGF-NSCs for future clinical trials of SCI repair.


Asunto(s)
Dependovirus/genética , Factor 2 de Crecimiento de Fibroblastos/biosíntesis , Terapia Genética , Vectores Genéticos , Regeneración Nerviosa , Células-Madre Neurales/trasplante , Elementos de Respuesta , Traumatismos de la Médula Espinal/terapia , Médula Espinal/fisiopatología , Animales , Autofagia , Proteínas Relacionadas con la Autofagia/metabolismo , Hipoxia de la Célula , Células Cultivadas , Modelos Animales de Enfermedad , Factor 2 de Crecimiento de Fibroblastos/genética , Técnicas de Transferencia de Gen , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Neuroglía/metabolismo , Neuroglía/patología , Ratas Sprague-Dawley , Recuperación de la Función , Médula Espinal/metabolismo , Médula Espinal/patología , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/fisiopatología
18.
Cell Biochem Funct ; 39(5): 588-595, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33615507

RESUMEN

Whey acidic proteins (WAP) perform a diverse range of important biological functions, including proteinase activity, calcium transport and bacterial growth. The WAP four-disulphide core domain protein 1 (WFDC1) gene (also called PS20), encodes the 20 kDa prostate stromal protein (ps20), which is a member of the WAP-type four-disulphide core domain family of proteins, and exhibits characteristics of serine protease inhibitors, such as elafin and secretory leukocyte protease inhibitor. Molecular structural analysis reveals that ps20 consists of four-disulphide bonds formed by eight cysteine residues located at the carboxyl terminus of the protein. Wfdc1-null mice were found to display no overt developmental phenotype, suggesting a dispensable role in organ growth and development. However, WFDC1 was able to mediate endothelial cell migration and pericyte stabilization, which are vital for the formation of functional vascular structures. WFDC1 was also found to be downregulated in cancers and exhibited a regulatory effect on cell proliferation. In addition, it was involved in the modulation of memory T cells during human immunodeficiency virus infection. Gaining a solid understanding of the mechanisms by which WFDC1 regulates tissue homeostasis and disease processes, in a tissue specific manner, will be an important move towards the development of WFDC1/ps20 as potential therapeutic targets.


Asunto(s)
Neoplasias/metabolismo , Neovascularización Patológica/metabolismo , Proteínas/metabolismo , Humanos , Neoplasias/patología , Neovascularización Patológica/patología , Conformación Proteica , Proteínas/química , Proteínas/genética
19.
J Cell Physiol ; 236(5): 3641-3659, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33044023

RESUMEN

Random-pattern skin flaps are widely applied to rebuild and restore soft-tissue damage in reconstructive surgery; however, ischemia and subsequent ischemia-reperfusion injury lead to flap necrosis and are major complications. Exenatide, a glucagon-like peptide-1 analog, exerts therapeutic benefits for diabetic wounds, cardiac injury, and nonalcoholic fatty liver disease. Furthermore, Exenatide is a known activator of autophagy, which is a complex process of subcellular degradation that may enhance the viability of random skin flaps. In this study, we explored whether exenatide can improve skin flap survival. Our results showed that exenatide augments autophagy, increases flap viability, enhances angiogenesis, reduces oxidative stress, and alleviates pyroptosis. Coadministration of exenatide with 3-methyladenine and chloroquine, potent inhibitors of autophagy, reversed the beneficial effects, suggesting that the therapeutic benefits of exenatide for skin flaps are due largely to autophagy activation. Mechanistically, we identified that exenatide enhanced activation and nuclear translocation of TFE3, which leads to autophagy activation. Furthermore, we found that exenatide activates the AMPK-SKP2-CARM1 and AMPK-mTOR signaling pathways, which likely lead to exenatide's effects on activating TFE3. Overall, our findings suggest that exenatide may be a potent therapy to prevent flap necrosis, and we also reveal novel mechanistic insight into exenatide's effect on flap survival.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Exenatida/farmacología , Supervivencia de Injerto/efectos de los fármacos , Trasplante de Piel , Piel/irrigación sanguínea , Adenina/análogos & derivados , Adenina/farmacología , Adenilato Quinasa/metabolismo , Animales , Autofagia/efectos de los fármacos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Edema/patología , Masculino , Ratones Endogámicos C57BL , Neovascularización Fisiológica/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteína-Arginina N-Metiltransferasas/metabolismo , Piroptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA