RESUMEN
The enormous potential of carbon dots (CDs) in agriculture has been widely reported, whereas their accurate distribution, transformation, and metabolic fate and potential soil health effects are not clearly understood. Herein, 13C-labeled CDs (13C-CDs) were sprayed on maize leaf, accumulated in all tissues, and promoted photosynthesis. Specifically, 13C-CDs were internalized to participate in the synthesis of glucose, sucrose, citric acid, glyoxylate, and chlorogenic acid, promoting tricarboxylic acid cycle (TCA) and phenylalanine metabolism. Additionally, the catabolism of 13C-CDs in vivo was mainly mediated by O2â¢- produced by oxidative stress. 13C-CDs did not have an obvious impact on the soil environment at the overall level. The detection of 13C signals in soil fauna suggested 13C-CDs in soil food chain transmission. This study systematically described the exact fate of CDs in plants and potential soil ecological risks and provided a more comprehensive analysis and support for the potential advantages of CDs in agricultural application.
Asunto(s)
Carbono , Hojas de la Planta , Suelo , Zea mays , Zea mays/metabolismo , Zea mays/química , Zea mays/crecimiento & desarrollo , Suelo/química , Hojas de la Planta/metabolismo , Hojas de la Planta/química , Carbono/metabolismo , Carbono/química , Fotosíntesis , Isótopos de Carbono/análisis , Isótopos de Carbono/metabolismo , Ciclo del Ácido Cítrico , Puntos Cuánticos/química , Puntos Cuánticos/metabolismoRESUMEN
The transmission of manure- and wastewater-borne antibiotic-resistant bacteria (ARB) to plants contributes to the proliferation of antimicrobial resistance in agriculture, necessitating effective strategies for preventing the spread of antibiotic resistance genes (ARGs) from ARB in the environment to humans. Nanomaterials are potential candidates for efficiently controlling the dissemination of ARGs. The present study investigated the abundance of ARGs in hydroponically grown garlic (Allium sativum L.) following nano-CeO2 (nCeO2) application. Specifically, root exposure to nCeO2 (1, 2.5, 5, 10â¯mgâ¯L-1, 18 days) reduced ARG abundance in the endosphere of bulbs and leaves. The accumulation of ARGs (cat, tet, and aph(3')-Ia) in garlic bulbs decreased by 24.2-32.5 % after nCeO2 exposure at 10â¯mgâ¯L-1. Notably, the lignification extent of garlic stem-disc was enhanced by 10â¯mgâ¯L-1 nCeO2, thereby accelerating the formation of an apoplastic barrier to impede the upward transfer of ARG-harboring bacteria to garlic bulbs. Besides, nCeO2 upregulated the gene expression related to alliin biosynthesis and increased allicin content by 15.9-16.2 %, promoting a potent antimicrobial defense for reducing ARG-harboring bacteria. The potential exposure risks associated with ARGs and Ce were evaluated according to the estimated daily intake (EDI). The EDI of ARGs exhibited a decrease exceeding 95 %, while the EDI of Ce remained below the estimated oral reference dose. Consequently, through stimulating physical and chemical defenses, nCeO2 contributed to a reduced EDI of ARGs and Ce, highlighting its potential for controlling ARGs in plant endosphere within the framework of nano-enabled agrotechnology.
Asunto(s)
Cerio , Ajo , Ajo/genética , Ajo/efectos de los fármacos , Cerio/toxicidad , Raíces de Plantas/microbiología , Raíces de Plantas/efectos de los fármacos , Farmacorresistencia Microbiana/genética , Hojas de la Planta , Antibacterianos/farmacología , Genes Bacterianos , Farmacorresistencia Bacteriana/genéticaRESUMEN
The associated benefits and potential environmental risks of nanopesticides on plant and soil health, particularly in comparison with traditional pesticides, have not been systematically elucidated. Herein, we investigated the impacts of the as-synthesized nano-acetamiprid (Nano-Ace, 20 nm) at low (10 mg/L), medium (50 mg/L), high (100 mg/L) doses and the corresponding high commercial acetamiprid (Ace, 100 mg/L) on the physiological and metabolic response of faba bean (Vicia faba L.) plants, as well as on rhizosphere bacterial communities and functions over short-, medium- and long-term exposures. Overall, Nano-Ace exposure contributed to basic metabolic pathways (e.g., flavonoids, amino acids, TCA cycle intermediate, etc.) in faba bean roots across the whole exposure period. Moreover, Nano-Ace exposure enriched rhizosphere beneficial bacteria (e.g., Streptomyces (420.7%), Pseudomonas (33.8%), Flavobacterium (23.3%)) and suppressed pathogenic bacteria (e.g., Acidovorax (44.5%)). Additionally, Nano-Ace exposure showed a trend of low promotion and high inhibition of soil enzyme activities (e.g., invertase, urease, arylsulfatase, alkaline phosphatase) involved in soil C, N, S, and P cycling, while the inhibition was generally weaker than that of conventional Ace. Altogether, this study indicated that the redox-responsive nano-acetamiprid pesticide possessed high safety for host plants and soil health.
Asunto(s)
Neonicotinoides , Raíces de Plantas , Microbiología del Suelo , Contaminantes del Suelo , Vicia faba , Vicia faba/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Raíces de Plantas/efectos de los fármacos , Suelo/química , Rizosfera , Plaguicidas/toxicidad , Nanopartículas/toxicidadRESUMEN
The continued acquisition and propagation of antibiotic resistance genes (ARGs) in the environment confound efforts to manage the global rise in antibiotic resistance. Here, CRISPR-Cas9/sgRNAs carried by nitrogen-doped carbon dots (NCDs) were developed to precisely target multi-"high-risk" ARGs (tet, cat, and aph(3')-Ia) commonly detected in the environment. NCDs facilitated the delivery of Cas9/sgRNAs to Escherichia coli (E. coli) without cytotoxicity, achieving sustained elimination of target ARGs. The elimination was optimized using different weight ratios of NCDs and Cas9 protein (1:1, 1:20, and 1:40), and Cas9/multi sgRNAs were designed to achieve multi-cleavage of ARGs in either a single strain or mixed populations. Importantly, NCDs successfully facilitated Cas9/multi sgRNAs for resensitization of antibiotic-resistant bacteria in soil (approaching 50%), whereas Cas9/multi sgRNAs alone were inactivated in the complex environment. This work highlights the potential of a fast and precise strategy to minimize the reservoir of antibiotic resistance in agricultural system.
Asunto(s)
Antibacterianos , Sistemas CRISPR-Cas , Antibacterianos/farmacología , ARN Guía de Sistemas CRISPR-Cas , Escherichia coli/genéticaRESUMEN
Application of nanomaterials (NMs) in agriculture poses an ingestion risk to humans and may affect the digestive process. Different fates of NMs with differential charges in the gastrointestinal tract should be considered. In this study, the interaction between three carbon dots (CDs) carried with different functional groups (-NH2, -OH, and -COOH) and pepsin was analyzed through an in vitro digestion model. The results showed that CDs significantly reduced pepsin activity. Among them, CDs-NH2 had the greatest effect, following by CDs-OH, and CDs-COOH. Besides, molecular docking demonstrated the specific binding site of CDs to pepsin, while the most stable binding energy (-8.10 kcal/mol) was formed between CDs-NH2 and pepsin. Further, CDs formed a nanomaterial-protein crown structure with pepsin. The present study enriches the functional group properties of CDs in the digestion and provides new ideas for the potential human health of NMs.
Asunto(s)
Pepsina A , Puntos Cuánticos , Humanos , Pepsina A/química , Carbono/química , Simulación del Acoplamiento Molecular , Sitios de Unión , Digestión , Puntos Cuánticos/químicaRESUMEN
To sustainably feed the growing global population, it is essential to increase crop yields on limited land while reducing the use of fertilizers and agrochemicals. The rhizosphere regulation shows significant potential to address this challenge. Here, foliar applied doping of nitrogen in carbon dots (N-CDs) entered maize leaves, and were transported to the stems and roots. The internalized N-CDs significantly increased the biomass (26.4-93.8%) and photosynthesis (17.0-20.3 %) of maize seedling during the three-week application of N-CDs, providing the substrate for tricarboxylic acid cycle (TCA) in shoots and roots. Correspondingly, more organic acids involved in TCA cycle, such as citric acid (14.0-fold), succinic acid (4.4-fold) and malic acid (3.4-fold), were synthesized and then secreted into rhizosphere after exposed to N-CDs for one day. As the exposure time increased, greater secretion of above organic acids by the roots was induced. However, no significant change was observed in the relative abundance of rhizobacteria after foliar application with N-CDs for one day. After one week, the relative abundances of Azotobacter, Bacillus, Lysobacter, Mucilaginibacter, and Sphingomonas increased by 0.8-3.8 folds. The relative abundance of more beneficial rhizobacteria (Sphingomonas, Lysobacter, Rhizobium, Azotobacter, Pseudomonas, Mucilaginibacter and Bacillus) enriched by 0.3-6.0 folds after two weeks, and Sphingomonas, Flavisolibacter and Bacillus improved by 0.6-3.2 folds after three weeks. These dynamic changes suggested that N-CDs initiate the synthesis and secretion of organic acids and then recruited beneficial rhizobacteria. The hierarchical partitioning analysis further indicated that N-CDs-induced secretion of organic acids from the roots was the main drivers of rhizobacteria community dynamics. The differential microbes altered by N-CDs were mainly involved in nitrogen (N) and phosphorus (P) cycles, which are beneficial for N and P uptake, and maize growth. These results provide insights into understanding the rhizosphere regulation of nanomaterials to improve plant productivity and nutrient-use efficiency.
RESUMEN
The exceptional porous architecture of graphdiyne (GDY) renders it a potential candidate for magnetic storage media. This paper delves into the magnetic properties of GDY doped with 5d transition metal (TM) atoms via first-principles calculations. Our results divulge the stable embedding of these TM atoms within the triangular cavities of GDY, yielding a significant magneto-crystal anisotropy energy. In particular, Ta@GDY exhibits a remarkable magneto-crystal anisotropy energy value of 11.72 meV. By introducing TM atoms at the top, one could significantly change the magneto-crystal anisotropy energy value of the system, subsequently flipping the easy magnetization axis. The MAE values of Os-W3@GDY and Re-Ir3@GDY are -21.60 meV and -41.68 meV, which are expanded by a factor of 4 and 6 compared to those before the introduction of the top atom. Furthermore, we observed that the magneto-crystal anisotropy energy value of Ta@GDY is modulated by strain. Our research uncovers GDY as a promising substrate for two-dimensional magnetic materials that could be exploited in forthcoming magnetic memory devices.
Asunto(s)
Grafito , Anisotropía , Fenómenos Físicos , Fenómenos MagnéticosRESUMEN
The self-supporting graphdiyne/exfoliated graphene (GDY/EG) composites materials were prepared by the solvothermal method and applied as lithium-ion batteries (LIBs). Graphdiyne (GDY) is a new type of carbon allotrope with a natural macroporous structure, but its conductivity is poor. A small amount of highly conductive graphene can improve surface conductivity and facilitate electron transport. The layered GDY/graphene heterogeneous interface can reduce the electron aggregation polarization, enhance the ability to obtain electrons from the electrolyte, and form a more uniform solid-electrolyte interface (SEI) film. The structural performance and electrochemical performance have been systematically studied. The results showed that the GDY/EG composite electrode has a reversible capacity of 1253 mA h g-1 after 600 cycles at a current density of 0.5 A g-1. When the current density is 5 A g-1, the GDY/EG composite electrode can still maintain a reversible capacity of 324 mA h g-1 after 2000 cycles, and the electrode can still maintain a good morphology after recycling. GDY/EG has a high reversible capacity, excellent rate capability, and cycle stability. A small amount of EG and inner foam copper form a double-layer conductivity, which changes the storage method of lithium ions and facilitates the rapid diffusion of lithium ions.
RESUMEN
As a novel carbon allotrope, graphdiyne exhibits excellent electrochemical properties such as high specific capacities, outstanding rate performances, and long cycle lives. These properties are attributed to its sp- and sp2-hybridized bonding and a natural large pore structure. Doping with light elements is a facile way to improve the electrochemical performance of graphdiyne. Herein, we report the preparation of fluorine-doped graphdiyne by exposure to XeF2 under a mild temperature. Compared to pristine graphdiyne, the capacities are doubled. We obtained reversible capacities of fluorinated graphdiyne up to 1080 mA h g-1 after 600 cycles at a current density of 500 mA g-1. At a higher current density of 1000 mA g-1, it still retained a high specific capacity of 693 mA h g-1 after 1000 cycles. Using in situ quantitative nanomechanical probe atomic force microscopy, we further analyzed the surface morphologies and elastic modulus to understand the mechanism of the electrochemical improvement. The fluorinated graphdiyne elastic modulus is doubled in contrast to pristine graphdiyne. The performance improvements are attributed to the improvement in conductivity and enhancement of the mechanical properties.
RESUMEN
Strain engineering of the thermal conductivity of graphene is highly desirable for various nanoscale thermal devices. Previous investigations have been focused mainly on the uniform strain applied uniaxially or biaxially. In this work we investigated, by non-equilibrium molecular dynamics simulations, the thermal transport behavior of graphene nanoribbons under local, nonuniform strain. A capped carbon nanotube (CNT) is used as a representative tip to indent the graphene, which creates a local stress field similar to those induced by nanoindentation or molecular adsorption. The relationship among structural deformations, phonon transport, and stress field was analyzed, and the effects of indentation depth and tip-surface interaction strength were discussed. More than 50% reduction of thermal conductance can be observed for a 20 nm × 5 nm graphene nanoribbon upon indentation. Our study revealed that the thermal transport of graphene responds flexibly and sensitively to the local strain, which can be exploited for new functional nanodevices across various disciplines such as position sensing or molecular sensing. Thermal sensors based on graphene can then be constructed.
RESUMEN
Defects are generally believed to deteriorate the superlative performance of graphene-based devices but may also be useful when carefully engineered to tailor the local properties and achieve new functionalities. Central to most defect-associated applications is the defect coverage and arrangement. In this work, we investigate, by molecular dynamics simulations, the mechanical properties and fracture dynamics of graphene sheets with randomly distributed vacancies or Stone-Wales defects under tensile deformations over a wide defect coverage range. With defects presented, an sp-sp(2) bonding network and an sp-sp(2)-sp(3) bonding network are observed in vacancy-defected and Stone-Wales-defected graphene, respectively. The ultimate strength degrades gradually with increasing defect coverage and saturates in the high-ratio regime, whereas the fracture strain presents an unusual descending-saturating-improving trend. In the dense vacancy defect situation, the fracture becomes more plastic and super-ductility is observed. Further fracture dynamics analysis reveals that the crack trapping by sp-sp(2) and sp-sp(2)-sp(3) rings and the crack-tip blunting account for the ductile fracture, whereas geometric rearrangement on the entire sheet for vacancy defects and geometric rearrangement on the specific defect sites for Stone-Wales defects account for their distinctive rules of the evolution of the fracture strain.
RESUMEN
In this paper, a new nanostructure is proposed, namely, the knitted graphene-nanoribbon sheet (KGS), which consists of zigzag and/or armchair graphene nanoribbons. The knitting technology is introduced to graphene nanotechnology to produce large area graphene sheets. Compared with pristine graphene, the chirality of a knitted graphene-nanoribbon sheet is much more flexible and can be designed on demand. The mechanical properties of KGSs are investigated by molecular dynamics simulations, including the effect of vacancies. With hydrogen atoms saturating the ribbon edges, the structure (KGS + H) is found to be of significant mechanical robustness, whose fracture does not rely on the critical bonds. The fracture strain of KGS + H remains nearly unchanged as long as there remains a single defect-free graphene nanoribbon in the tensile direction. This graphene nano knitting technique is experimentally feasible, inspired by a recent demonstration by Fournier et al. [Phys. Rev. B, 2011, 84, 035435] of lifting a single molecular wire using a combined frequency-modulated atomic force and tunnelling microscope.
RESUMEN
Morphological patterns and structural features play crucial roles in the physical properties of functional materials. In this paper, the mechanical properties of grafold, an architecture of folded graphene nanoribbon, are investigated via molecular dynamics simulations and intriguing features are discovered. In contrast to graphene, grafold is found to develop large deformations upon both tensile and compressive loading along the longitudinal direction. The tensile deformation is plastic, whereas the compressive deformation is elastic and reversible within the strain range investigated. The calculated Young's modulus, tensile strength, and fracture strain are comparable to those of graphene, while the compressive strength and strain are much higher than those of graphene. The length, width, and folding number of grafold have distinctive impacts on the mechanical performance. These unique behaviors render grafold a promising material for advanced mechanical applications.
RESUMEN
Graphene is an outstanding material with ultrahigh thermal conductivity. Its thermal transfer properties under various strains are studied by reverse nonequilibrium molecular dynamics. Based on the unique two-dimensional structure of graphene, the distinctive geometries of graphene sheets and graphene nanoribbons with large flexibility and their intriguing thermal properties are demonstrated under strains. For example, the corrugation under uniaxial compression and helical structure under light torsion, as well as tube-like structure under strong torsion, exhibit enormously different thermal conductivity. The important robustness of thermal conductivity is found in the corrugated and helical configurations of graphene nanoribbons. Nevertheless, thermal conductivity of graphene is very sensitive to tensile strain. The relationship among phonon frequency, strain and thermal conductivity are analyzed. A similar trend line of phonon frequency dependence of thermal conductivity is observed for armchair graphene nanoribbons and zigzag graphene nanoribbons. The unique thermal properties of graphene nanoribbons under strains suggest their great potentials for nanoscale thermal managements and thermoelectric applications.