Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Front Chem ; 7: 523, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31448255

RESUMEN

A feasible and green sol-gel method is proposed to fabricate well-distributed nano-particulate Fe-Ni2P incorporated in N, P-codoped porous carbon nanosheets (Fe-Ni2P@N,P-CNSs) using biomass agarose as a carbon source, and ethylenediamine tetra (methylenephosphonic acid) (EDTMPA) as both the N and P source. The doped Fe in Ni2P is essential for a substantial increase in intrinsic catalytic activity, while the combined N,P-containing porous carbon matrix with a better degree of graphitization endows the prepared Fe-Ni2P@N,P-CNSs catalyst with a high specific surface area and improved electrical conductivity. Benefiting from the specific chemical composition and designed active site structure, the as-synthesized Fe-Ni2P@N,P-CNSs manifests a satisfying catalytic performance toward both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in an alkaline solution, with low overpotential, small Tafel slope and long-term durability, relative to the counterparts (Fe-free Ni12P5/Ni2P2O7@N,P-CNSs and CNSs) with single components and even comparable to Pt/C and RuO2 catalysts. The present work broadens the exploration of efficient bifunctional oxygen electrocatalysts using earth abundant biomass as carbon sources based on non-noble metals for low cost renewable energy conversion/storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA