RESUMEN
OBJECTIVE: The authors compared the effect of 2 insertion methods, namely the conventional laryngeal mask airway (LMA) insertion and the index finger-assisted LMA insertion, on the incidence of complications associated with LMA Protector insertion. METHODS: The authors enrolled 300 patients, who underwent painless bronchoscopy. The patients ranged in age between 18 and 75 and were classified as American Society of Anesthesiologists grade I to III. They were randomly divided into 2 groups: a control group of 150 patients and an assisted group comprising 150 patients. LMA was inserted using the conventional and index finger-assisted insertion methods in both groups, respectively. The primary outcome was postoperative complications, such as oral mucosal injury and pharyngeal pain. Secondary outcomes included the success rate of first-time insertion, the incidence rate of inverse folding of LMA tips, oropharyngeal leak pressure (OLP), and other postoperative complications. RESULTS: Compared with the conventional LMA insertion method, index finger-assisted LMA insertion can significantly reduce the incidence rate of oral mucosal injury and pharyngeal pain, with fewer insertion failures. There was a statistically significant difference between the 2 groups in the visual field grading before adjustment for LMA alignment (P<0.0001). The conventional insertion method increased the likelihood of inverse folding of LMA tips. When the conventional insertion method was utilized, there was a significant difference in airway pressure and tidal volume before and after alignment under a fiberoptic bronchoscope (P<0.0001), but no significant difference in visual field grading and respiratory mechanics-related indicators. CONCLUSIONS: Index finger-assisted insertion can significantly reduce the incidence rate of LMA Protector-related complications and inverse folding of LMA tips.
RESUMEN
BACKGROUND: Many urothelial bladder carcinoma (UBC) patients don't respond to immune checkpoint blockade (ICB) therapy, possibly due to tumor-associated neutrophils (TANs) suppressing lymphocyte immune response. METHODS: We conducted a meta-analysis on the predictive value of neutrophil-lymphocyte ratio (NLR) in ICB response and investigated TANs' role in UBC. We used RNA-sequencing, HALO spatial analysis, single-cell RNA-sequencing, and flow cytometry to study the impacts of TANs and prostaglandin E2 (PGE2) on IDO1 expression. Animal experiments evaluated celecoxib's efficacy in targeting PGE2 synthesis. RESULTS: Our analysis showed that higher TAN infiltration predicted worse outcomes in UBC patients receiving ICB therapy. Our research revealed that TANs promote IDO1 expression in cancer cells, resulting in immunosuppression. We also found that PGE2 synthesized by COX-2 in neutrophils played a key role in upregulating IDO1 in cancer cells. Animal experiments showed that targeting PGE2 synthesis in neutrophils with celecoxib enhanced the efficacy of ICB treatment. CONCLUSIONS: TAN-secreted PGE2 upregulates IDO1, dampening T cell function in UBC. Celecoxib targeting of PGE2 synthesis represents a promising approach to enhance ICB efficacy in UBC.
Asunto(s)
Carcinoma de Células Transicionales , Neoplasias de la Vejiga Urinaria , Animales , Humanos , Dinoprostona , Celecoxib/farmacología , Neutrófilos/patología , Ciclooxigenasa 2/metabolismo , Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/metabolismo , Carcinoma de Células Transicionales/tratamiento farmacológico , Carcinoma de Células Transicionales/metabolismo , Linfocitos T CD8-positivos/patología , ARN/metabolismoRESUMEN
[This corrects the article DOI: 10.18632/oncotarget.13978.].
RESUMEN
Sulfonated N-heterocyclic poly(aryl ether) proton-exchange membranes have potential applications in the fuel-cell field due to their favorable proton conduction capacity and stability. This paper investigates the changes in mass and performance decay, such as proton conduction and mechanical strength, of sulfonated poly(ether ether ketone)s (SPEEKs) and three sulfonated N-heterocyclic poly(aryl ether ketone) (SPPEK, SPBPEK-P-8, and SPPEKK-P) membranes in Fenton's oxidative experiment. The SPEEK membrane exhibited the worst oxidative stability. The oxidative stability of the SPPEK membrane is enhanced due to the introduction of phthalazinone units in the chains. The SPPEKK-P and SPBPEK-P-8 membranes exhibit better radical tolerance than the SPPEK membrane, with proton conductivity retention rates of 66% and 73% for 1 h oxidative treatment, respectively. In addition, the molecular chains of SPPEKK-P and SPBPEK-P-8 exhibit relatively little disruption. The pendant benzenesulfonic groups enhance the steric effects for reducing radical attacks on the ether bonds and reduce the hydration of molecular chains. The introduction of phthalazinone units decreases the rupture points in the main chain. Therefore, the radical tolerance of the membranes is improved. These results provide a reference for the design of highly stable sulfonated heterocyclic poly(aryl ether) membranes.
RESUMEN
The limited response rate of immunotherapy in upper tract urothelial carcinoma (UTUC) might be attributed to additional immunosuppressive mechanisms in vivo. As a promising immune checkpoint target, the expression and prognostic role of indoleamine 2,3-dioxygenase 1 (IDO1) in UTUC remains unknown. In this study, the expression and prognostic value of IDO1 was analyzed in 251 patients from 3 independent cohorts. The least absolute shrinkage and selection operator (LASSO) Cox regression model was used to construct an IDO1-based immune classifier and external validation was performed to further validate the classifier. RNA sequencing and immunofluorescence were used to explore the immune contexture of different risk groups stratified by classifier. We found that high IDO1 expression on tumor cells (TC) indicated a poorer overall survival and disease-free survival in all cohorts. Patients with high expression of IDO1 TC possessed increased infiltration of CD4+ , CD8+ and Foxp3+ T cells. An immune classifier based on intratumoral CD8+ lymphocytes, IDO1 TC, and stromal PD-L1 expression status was developed, with its area under the curves (AUCs) values for overall survival at 5 y being 0.79 (95% confidence interval [CI] 0.65-0.93) in the discovery cohort, 0.75 (95% CI 0.58-0.92) and 0.78 (95% CI 0.65-0.92) in the internal and external validation cohorts, respectively. The high-risk group stratified by the immune classifier was associated with immunosuppressive contexture, accompanied by enhanced CD8+ T cells exhaustion patterns. Our IDO1-based immune classifier can provide a superior accuracy for survival prediction and lead to individual stratification of UTUC immune subtypes.
Asunto(s)
Carcinoma de Células Transicionales/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Neoplasias de la Vejiga Urinaria/metabolismo , Anciano , Antígeno B7-H1/metabolismo , Biomarcadores de Tumor/metabolismo , Linfocitos T CD8-positivos/metabolismo , Carcinoma de Células Transicionales/clasificación , Carcinoma de Células Transicionales/inmunología , Femenino , Humanos , Tolerancia Inmunológica , Modelos Logísticos , Linfocitos Infiltrantes de Tumor/metabolismo , Masculino , Persona de Mediana Edad , Pronóstico , Reproducibilidad de los Resultados , Neoplasias de la Vejiga Urinaria/clasificación , Neoplasias de la Vejiga Urinaria/inmunologíaRESUMEN
Mitochondria are double membrane organelles in eukaryotic cells that provide energy by generating adenosine triphosphate (ATP) through oxidative phosphorylation. They are crucial to many aspects of cellular metabolism. Mitochondria contain their own DNA that encodes for essential proteins involved in the execution of normal mitochondrial functions. Compared with nuclear DNA, the mitochondrial DNA (mtDNA) is more prone to be affected by DNA damaging agents, and accumulated DNA damages may cause mitochondrial dysfunction and drive the pathogenesis of a variety of human diseases, including neurodegenerative disorders and cancer. Therefore, understanding better how mtDNA damages are repaired will facilitate developing therapeutic strategies. In this review, we focus on our current understanding of the mtDNA repair system. We also discuss other mitochondrial events promoted by excessive DNA damages and inefficient DNA repair, such as mitochondrial fusion, fission, and mitophagy, which serve as quality control events for clearing damaged mtDNA.
RESUMEN
Metformin, an oral medicine broadly used for the treatment of type 2 diabetes, has been found to significantly improve tumor incidence and survival in large-scale clinical analysis. In recent years, the antitumor effect and mechanism of metformin have received much attention. Myeloid-derived suppressor cells (MDSCs), a major immunosuppressive cell type that accumulates in tumor-bearing hosts, can inhibit T cells and promote tumor immune escape. The mechanism by which metformin exerts its anti-tumor effect by regulating MDSCs remains unclear. Here, we found that metformin could inhibit the accumulation and suppressive capacity of G-MDSCs, delay tumor progression and elicit Th1 and CTL responses in murine colon cancer CT-26 cell-transplanted mice. In additionally, metformin could enhance the phosphorylation of AMPK, reduce STAT3 phosphorylation levels, and down-regulate the inhibitory function of G-MDSCs in vitro. These results suggest that metformin may be a potential clinical benefit for antitumor immunotherapy in tumor-bearing mice.
Asunto(s)
Metformina/farmacología , Células Supresoras de Origen Mieloide/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Quinasas de la Proteína-Quinasa Activada por el AMP , Animales , Línea Celular Tumoral , Femenino , Inmunoterapia , Ratones , Ratones Endogámicos BALB C , Modelos Animales , Células Supresoras de Origen Mieloide/inmunología , Neoplasias/inducido químicamente , Proteínas Quinasas/metabolismo , Factor de Transcripción STAT3/metabolismo , Bazo/inmunologíaRESUMEN
BACKGROUND: Effectiveness of clinical therapy such as chemotherapy for solid tumors is limited by acquired drug resistance and side effects. Available antitumor immunity methods showed promising prospect of cancer therapy. However, more drug targets for boosting antitumor immunity still need to be explored and selective and effective compounds are yet to be developed. PURPOSE: To study the effect and possible mechanism of compound P5091, a selective USP7 inhibitor, on CT26 xenografts growth in mice. MATERIALS AND METHODS: CT26 xenografts model was employed to examine the anti-tumor effect of P5091. RT-PCR and ELISA analysis were used to detect the level of IFN-γ, TNF-α and IL-10 in tumor tissue and serum, respectively. IFN-γ expression in CD4+ and CD8+ T cells was analyzed by intracellular stain. The level of FOXP3 in Treg cells was confirmed by intracellular stain and western blotting. RESULTS: Compound P5091, a selective USP7 inhibitor, was found to inhibit CT26 xenografts growth in mice, which is comparable to the effect of Anti-PD-1 antibody. RT-PCR analysis showed that P5091 treatment decreased IL-10 mRNA level in tumor tissue while elevated mRNA level of IFN-γ and TNF-α. Moreover, ELISA analysis manifested decreased of IL-10 and elevation of IFN-γ and TNF-α in serum from tumor bearing mice. Intracellular stain showed increased IFN-g expression both in CD4+ and CD8+ T cells after P5091 treatment. Furthermore, P5091 treatment caused FOXP3 loss in Treg cells decreased the proportion of Treg cells in tumor bearing mice. CONCLUSION: Our study here showed that P5091 may be a candidate for cancer immunotherapy.
RESUMEN
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have obtained excellent therapeutic effects against non-small cell lung cancer (NSCLC) harboring activating EGFR mutations. However, some patients have exhibited primary resistance which becomes a major obstacle in effective treatment of NSCLC. The mechanisms of EGFR-TKIs resistance involved are still poorly understood. Many studies suggest that miRNAs play an important role in regulating drug sensitivity of EGFR-TKIs. The aim of the present study was to examine differentially expressed miRNAs in plasma between EGFR-TKIs sensitive and EGFR-TKIs primary resistance patients. MiRNA microarray of plasma from patients' blood identified 16 differentially expressed miRNAs of which 15 (hsv2-miR-H19, hsa-miR-744-5p, hsa-miR-3196, hsa-miR-3153, hsa-miR-4791, hsa-miR-4803, hsa-miR-4796-3p, hsa-miR-372-5p, hsa-miR-138-2-3p, hsa-miR-16-1-3p, hsa-miR-1469, hsa-miR-585-3p, ebv-miR-BART14-5p, hsa-miR-769-3p, hsa-miR-548aq-5p) were down regulated while only hsa-miR-503-3p was up regulated in primary resistant patients' plasma. Volcano plot and hierarchical clustering were performed to examine the accuracy of the miRNAs. Then validation with quantitative real-time PCR was performed and the result was in accordance with the array data. Functional analysis of these differentially expressed miRNAs with Ingenuity Pathway Analysis (IPA) revealed a common signaling network including MYC, CCND1, IGF1 and RELA. In conclusion, our finding may play important role in understanding the mechanisms underlying the problem and should be further evaluated as potential biomarkers in primary resistance of NSCLC.
RESUMEN
Myeloid-derived suppressor cells (MDSCs) weaken the antitumor immune response through the inhibition of effector T cell activity and the production of immunosuppressive factors in pathological sites. It is well established that interleukin-17A (IL-17A) has a remarkable role on the promotion of inflammation and tumor formation, and IL-17 has been implicated in the enhancement of immunosuppression of MDSCs, which consequently promotes tumor progression. A detailed study of this relationship remains elusive. In our study, we not only confirmed the promotion of IL-17 on Lewis lung carcinoma (LLC) development but also surprisingly showed that IL-17 could extend the fate and enhance the immunosuppressive effect of MDSCs through activating ERK1/2. Additionally, the effect of IL-17 on MDSCs was reversed, even in tumors by blocking ERK1/2. Interdicting the signaling molecule ERK1/2 could increase the apoptosis of MDSCs and weaken the suppressive activity of MDSCs, so that thereafter, the antitumor immunity could be restored partly. Therefore, these findings offer new insights into the importance of IL-17 and the downstream signaling factor ERK1/2 for MDSCs.
Asunto(s)
Carcinoma Pulmonar de Lewis/patología , Interleucina-17/administración & dosificación , Células Supresoras de Origen Mieloide/citología , Animales , Apoptosis/efectos de los fármacos , Carcinoma Pulmonar de Lewis/inmunología , Línea Celular Tumoral , Inyecciones Subcutáneas , Interleucina-17/farmacología , Sistema de Señalización de MAP Quinasas , Ratones , Células Supresoras de Origen Mieloide/efectos de los fármacos , Células Supresoras de Origen Mieloide/inmunologíaRESUMEN
Based on recognition of driver mutations, treatment paradigm for non-small-cell lung cancer (NSCLC) patients has been shifted. However, recently exon 19 deletion mutation (del19) of epidermal growth factor receptor (EGFR) clearly shows better clinical benefit over single-point substitution mutation L858R in exon 21 (L858R). The aim of this study was to investigate the difference by analyzing the expression of plasma microRNAs (miRNAs) of NSCLC patients with EGFR mutation del19 or L858R. MiRNA microarray of plasma from patients' blood identified 79 mapped, network-eligible miRNAs (fold > 5), of which 76 were up regulated and 3 were down regulated. Genetic network was performed with Ingenuity Pathway Analysis (IPA). Among analysis, MYC, Argonaute2 (AGO2), Y-box binding protein 1 (YBX1), cyclin E1 (CCNE1) were involved in organismal abnormalities and cancer. Our findings provide information on the epigenetic signature of the two major sensitive mutations among NSCLC and add to the understanding of mechanisms underlying the different outcomes.