Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 49(3): 331-348, 2024 Mar 28.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38970507

RESUMEN

OBJECTIVES: Abnormal programmed cell death in immune cells is associated with autoimmune diseases, but the patterns of programmed cell death in systemic lupus erythematosus (SLE) and especially lupus nephritis (LN) remain unclear. This study aims to explore the association between SLE, LN, and immune cell death patterns. METHODS: Bulk RNA sequencing (bulk RNA-seq) and single-cell RNA sequencing (scRNA-seq) data were downloaded from the Gene Expression Omnibus (GEO) database. Bioinformatic analysis was conducted to explore the expression levels of genes related to 3 cell death patterns in peripheral blood mononuclear cells of SLE patients. Key cell subsets involved in the imbalance of cell death patterns were identified through scRNA-seq. Immunofluorescence was used to detect the expression levels of receptor interacting serine/threonine kinase 3 (RIPK3), mixed-lineage kinase domain-like protein (MLKL), phosphorylated MLKL (pMLKL), caspase 1 (CASP1), CD1c molecule (CD1C), C-type lectin domain containing 9A (CLEC9A), and X-C motif chemokine receptor 1 (XCR1) in dendritic cells (DC). scRNA-seq was performed on kidney tissues collected from LN patients and healthy controls (HC) at the Third Xiangya Hospital of Central South University, followed by bioinformatic analysis to identify key cell subsets involved in the imbalance of cell death patterns. Pseudotime analysis and ligand-receptor analysis were used to explore the differentiation direction and cell communication of different DC subsets. Transient transfection was used to transfect RAW264.7 cells with empty plasmid, empty plasmid+dsDNA (HSV-DNA), empty plasmid+200 µmol/L tert-butyl hydroperoxide (TBHP), stimulator of interferon genes (STING) shRNA plasmid, STING shRNA plasmid+dsDNA (HSV-DNA), and STING shRNA plasmid+200 µmol/L TBHP. Annexin V-mCherry and SYTOX Green staining were used to detect cell death in each group. Western blotting was used to detect the activation of CASP1, gasdermin D (GSDMD), RIPK3, and MLKL in each group. RESULTS: Bioinformatic analysis showed an imbalance in 3 cell death patterns in SLE and LN patients: Pro-inflammatory pyroptosis and necroptosis were activated, while anti-inflammatory apoptosis was inhibited. The key cell subsets involved were DC subsets, particularly focusing on CLEC9A+cDC1. Immunofluorescence results showed that the expression levels of RIPK3, MLKL, and CASP1 in DCs were higher in the SLE group compared to the HC group. pMLKL and CASP1 expression levels in renal cDC1 marked by CLEC9A and XCR1 were higher in the LN group than in the HC group. Pseudotime analysis and ligand-receptor analysis suggested that the CLEC9A+cDC1 subset in LN kidney tissues originated from peripheral circulation. Annexin V-mCherry and SYTOX Green staining results showed that the number of dead cells decreased in the STING shRNA transfection group compared to the empty plasmid group in RAW264.7 cells. Western blotting results showed that the activation of CASP1, GSDMD, RIPK3, and MLKL was decreased in the STING shRNA transfection group compared to the empty plasmid group. CONCLUSIONS: This study provides novel insights into the role of CLEC9A+cDC1 in the imbalance of cell death patterns in SLE and LN.


Asunto(s)
Células Dendríticas , Lupus Eritematoso Sistémico , Nefritis Lúpica , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Humanos , Nefritis Lúpica/metabolismo , Nefritis Lúpica/genética , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/metabolismo , Células Dendríticas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Apoptosis , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Biología Computacional , Leucocitos Mononucleares/metabolismo , Análisis de Secuencia de ARN
2.
Biochem Pharmacol ; 223: 116163, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522555

RESUMEN

Allergic contact dermatitis (ACD) is a common skin disease featured with skin inflammation and a mixed itch/pain sensation. The itch/pain causes the desire to scratch, affecting both physical and psychological aspects of patients. Nevertheless, the mechanisms underlying itch/pain sensation of ACD still remain elusive. Here, we found that oxidative stress and oxidation-related injury were remarkably increased in the inflamed skin of a mouse model of ACD. Reducing oxidative stress significantly attenuated itch/pain-related scratching, allokonesis and skin inflammation. RNA-Sequencing reveals oxidative stress contributes to a series of skin biological processes, including inflammation and immune response. Attenuating oxidative stress reduces overproduction of IL-1ß and IL-33, two critical cytokines involved in inflammation and pain/itch, in the inflamed skin of model mice. Exogenously injecting H2O2 into the neck skin of naïve mice triggered IL-33 overproduction in skin keratinocytes and induced scratching, which was reduced in mice deficient in IL-33 receptor ST2. ACD model mice showed remarkable neutrophil infiltration in the inflamed skin. Blocking neutrophil infiltration reduced oxidative stress and attenuated scratching and skin inflammation. Therefore, our study reveals a critical contribution of neutrophil-derived oxidative stress to skin inflammation and itch/pain-related scratching of ACD model mice via mechanisms involving the triggering of IL-33 overproduction in skin keratinocytes. Targeting skin oxidative stress may represent an effective therapy for ameliorating ACD.


Asunto(s)
Dermatitis Alérgica por Contacto , Interleucina-33 , Humanos , Animales , Ratones , Interleucina-33/genética , Citocinas , Peróxido de Hidrógeno/farmacología , Neutrófilos , Piel , Dermatitis Alérgica por Contacto/psicología , Prurito/inducido químicamente , Modelos Animales de Enfermedad , Inflamación , Dolor
3.
Adv Mater ; 36(7): e2308039, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37802505

RESUMEN

The buried interface of the perovskite layer has a profound influence on its film morphology, defect formation, and aging resistance from the outset, therefore, significantly affects the film quality and device performance of derived perovskite solar cells. Especially for FAPbI3 , although it has excellent optoelectronic properties, the spontaneous transition from the black perovskite phase to nonperovskite phase tends to start from the buried interface at the early stage of film formation then further propagate to degrade the whole perovskite. In this work, by introducing ─NH3 + rich proline hydrochloride (PF) with a conjugated rigid structure as a versatile medium for buried interface, it not only provides a solid α-phase FAPbI3 template, but also prevents the phase transition induced degradation. PF also acts as an effective interfacial stress reliever to enhance both efficiency and stability of flexible solar cells. Consequently, a champion efficiency of 24.61% (certified 23.51%) can be achieved, which is the highest efficiency among all reported values for flexible perovskite solar cells. Besides, devices demonstrate excellent shelf-life/light soaking stability (advanced level of ISOS stability protocols) and mechanical stability.

4.
Biomed Pharmacother ; 170: 115957, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042115

RESUMEN

Excessive deposition of monosodium urate (MSU) crystal in the joint results in gout arthritis, which triggers severe pain and affects life quality. Oxidative stress is a pivotal mechanism that contributes to etiology of gout pain and inflammation. Here we investigated whether activating Nrf2, which plays important roles in regulating endogenous antioxidant response, would attenuate gout arthritis via promoting antioxidant signaling in joint tissues. Gout arthritis model was established by intra-articular injection of MSU (500 µg/ankle) into the right ankle joint of mouse. Pharmacologically activating Nrf2 by activator oltipraz (50, 100 or 150 mg/kg, intraperitoneal) at 1 h before and 5, 23, 47 h after model establishment dose-dependently inhibited joint inflammation, mechanical and heat hypersensitivities in model mice. Oltipraz (100 mg/kg) reversed gait impairments without altering locomotor activity and reduced neutrophil infiltrations in ankle joints. In vitro studies revealed oltipraz (25 µM) inhibited MSU-induced ROS production in mouse macrophages and improved mitochondrial bioenergetics impairments caused by MSU. In vivo ROS imaging combined with biochemical assays confirmed the antioxidant effects of oltipraz on model mice. Nrf2 activation inhibited pro-inflammatory cytokine overproduction in ankle joint and attenuated the overexpression and enhancement in TRPV1 channel in DRG neurons innervating hind limb. Therapeutic effects of oltipraz were abolished by inhibiting Nrf2 or in Nrf2 knockout mice. These results suggest pharmacologically activating Nrf2 alleviates gout pain, gait impairments, inflammation and peripheral sensitization via Nrf2-dependent antioxidant mechanism. Targeting Nrf2 may represent a novel treatment option for gout arthritis.


Asunto(s)
Artritis Gotosa , Gota , Ratones , Animales , Antioxidantes/uso terapéutico , Gota/inducido químicamente , Gota/complicaciones , Factor 2 Relacionado con NF-E2 , Ácido Úrico/efectos adversos , Especies Reactivas de Oxígeno , Artritis Gotosa/tratamiento farmacológico , Inflamación/inducido químicamente , Dolor/tratamiento farmacológico
5.
Nanomaterials (Basel) ; 13(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38063728

RESUMEN

CsPbI3 perovskite quantum dots (QDs) have attracted much attention in the field of solar cells because of their excellent photovoltaic properties. Conventional modification of long-chain insulating ligands can ensure good dispersion and film-forming stability of QDs, but the limitations of their low defect passivation ability and poor charge transport ability will make them fail to achieve high efficiency in the corresponding solar cell devices. In this study, by introducing "Benzylphosphonic acid" short-chain ligands to the surface of CsPbI3 QDs, the ligands were re-administered on the surface during the preparation of the CsPbI3 QDs as well as during the film-forming process. The strong coordination ability of Benzenephosphonic acid can effectively passivate defects on the surface of CsPbI3 QDs and inhibit non-radiative recombination and phase transition. Meanwhile, this short-chain ligand can effectively promote the charge exchange between adjacent QDs and improve the electrical transport properties of the film. The efficiency of the Benzylphosphonic acid-modified CsPbI3 QDs solar cell reaches 13.91% compared to the unmodified device (PCE of 11.4%). The storage stability and operation stability of the device are also significantly improved. (The efficiency remains at 91% of the original for 800 h of atmospheric storage; the efficiency remains at 92% of the original for 200 h of continuous light exposure.) The present strategy realizes the simultaneous improvement of photovoltaic properties and stability of CsPbI3 QD solar cells and also provides a reference for surface ligand engineering to realize highly efficient and stable perovskite quantum dot solar cells.

6.
Colloids Surf B Biointerfaces ; 231: 113548, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37729798

RESUMEN

Calcium phosphate cement (CPC) has attracted extensive interest from surgeons and materials scientists. However, the collapsibility of calcium phosphate cement limits its clinical application. In this work, a gel network of SA-CA formed by the reaction of citric acid (CA) and sodium alginate (SA) was introduced into the α-TCP/α-CSH composite. Furthermore, a high proportion of α-CSH provided more calcium sources for the system to combine with SA forming a gel network to improve the cohesion property of the composite, which also played a regulating role in the conversion of materials to HA. The morphology, physicochemical properties, and cell compatibility of the composites were studied with SA-CA as curing solution. The results show that SA-CA plays an important role in the compressive strength and collapse resistance of bone cement, and its properties can be regulated by changing the content of CA. When CA is 10 wt%, the mechanical strength is the highest, reaching 12.49 ± 2.03 MPa, which is 265.80% higher than water as the solidifying liquid. In addition, the cell experiments showed that the samples were not toxic to MC3T3 cells. The results of ALP showed that when SA-CA were used as curing solution, the activity of ALP was higher than that of blank sample, indicating that the composite bone cement could be conducive to the differentiation of osteoblasts. In this work, the α-CSH/α-TCP based composite regulated by gel network of SA-CA can provide a promising strategy to improve the cohesion of bone cement.


Asunto(s)
Sulfato de Calcio , Fosfatos , Sulfato de Calcio/química , Cementos para Huesos/farmacología , Cementos para Huesos/química , Ácido Cítrico/farmacología , Sulfatos , Alginatos/farmacología , Alginatos/química , Fosfatos de Calcio/farmacología , Fosfatos de Calcio/química , Ensayo de Materiales
7.
J Neuroinflammation ; 20(1): 109, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37158939

RESUMEN

BACKGROUND: Complex regional pain syndrome type-I (CRPS-I) causes excruciating pain that affect patients' life quality. However, the mechanisms underlying CRPS-I are incompletely understood, which hampers the development of target specific therapeutics. METHODS: The mouse chronic post-ischemic pain (CPIP) model was established to mimic CRPS-I. qPCR, Western blot, immunostaining, behavioral assay and pharmacological methods were used to study mechanisms underlying neuroinflammation and chronic pain in spinal cord dorsal horn (SCDH) of CPIP mice. RESULTS: CPIP mice developed robust and long-lasting mechanical allodynia in bilateral hindpaws. The expression of inflammatory chemokine CXCL13 and its receptor CXCR5 was significantly upregulated in ipsilateral SCDH of CPIP mice. Immunostaining revealed CXCL13 and CXCR5 was predominantly expressed in spinal neurons. Neutralization of spinal CXCL13 or genetic deletion of Cxcr5 (Cxcr5-/-) significantly reduced mechanical allodynia, as well as spinal glial cell overactivation and c-Fos activation in SCDH of CPIP mice. Mechanical pain causes affective disorder in CPIP mice, which was attenuated in Cxcr5-/- mice. Phosphorylated STAT3 co-expressed with CXCL13 in SCDH neurons and contributed to CXCL13 upregulation and mechanical allodynia in CPIP mice. CXCR5 coupled with NF-κB signaling in SCDH neurons to trigger pro-inflammatory cytokine gene Il6 upregulation, contributing to mechanical allodynia. Intrathecal CXCL13 injection produced mechanical allodynia via CXCR5-dependent NF-κB activation. Specific overexpression of CXCL13 in SCDH neurons is sufficient to induce persistent mechanical allodynia in naïve mice. CONCLUSIONS: These results demonstrated a previously unidentified role of CXCL13/CXCR5 signaling in mediating spinal neuroinflammation and mechanical pain in an animal model of CRPS-I. Our work suggests that targeting CXCL13/CXCR5 pathway may lead to novel therapeutic approaches for CRPS-I.


Asunto(s)
Quimiocina CXCL13 , Dolor Crónico , Receptores CXCR5 , Distrofia Simpática Refleja , Animales , Ratones , Quimiocina CXCL13/metabolismo , Modelos Animales de Enfermedad , Hiperalgesia , Enfermedades Neuroinflamatorias , FN-kappa B , Asta Dorsal de la Médula Espinal , Receptores CXCR5/metabolismo
8.
Clin Transl Med ; 13(4): e1237, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37026377

RESUMEN

BACKGROUND: Lupus nephritis (LN) is among the most common complication of systemic lupus erythematosus (SLE) with high mortality and morbidity. The analysis of LN kidney's local immune response through single-cell and spatial transcriptome enables the study of potential therapeutic targets. METHODS: By single cell sequencing and spatial transcriptome, we profile cells from LN kidney and normal kidney tissues to characterize cellular composition and elucidate the potential upstream monocyte/macrophage (Mono/MΦ) initiating the auto-immune response. After the high-throughput synergy screening, we performed the immunofluorescence to identify the specific cells in LN patients. The function experiments were finished by flow cytometry and Elisa. RESULTS: By immunofluorescence and spatial transcriptome, we identified differential subsets of Mono/MΦ and demonstrated that they exhibit temporal expression of TIMP1, IL1B, SPP1 and APOE. With the function experiments, we found that the APOE+ Mono may be compensatorily increased in LN, and the capacity of antigen presenting was decreased with the overexpression of APOE. Furthermore, how do the LN-specific Mono/MΦ transport in and out the glomerulus to active the local immune response remains unclear. Our results showed that lymphangiogenesis occurred in LN kidneys but not in normal kidneys, suggesting the presence of a new lymphatic vessel may serve as a 'green channel' for LN-specific Mono/MΦ. CONCLUSIONS: In LN, APOE+ Mono are compensatorily elevated, with decreased antigen presenting ability and reduced secretion of interferons. The lymphangiogenesis in LN prompts the trafficking of Mono/MΦ in LN kidney.


Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , Humanos , Nefritis Lúpica/genética , Nefritis Lúpica/diagnóstico , Monocitos , Riñón , Lupus Eritematoso Sistémico/complicaciones , Apolipoproteínas E/genética
9.
Front Oncol ; 12: 970544, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36249005

RESUMEN

Background: Epstein-Barr virus (EBV) is considered a carcinogenic virus, which is associated with high risk for poor prognosis in lymphoma patients, and there has been especially no satisfying and effective treatment for EBV+ lymphoma. We aimed to identify the immunological microenvironment molecular signatures which lead to the poor prognosis of EBV+ lymphoma patients. Methods: Differential genes were screened with microarray data from the GEO database (GSE38885, GSE34143 and GSE13996). The data of lymphoid neoplasm diffuse large B-cell lymphoma (DLBC) from the TCGA database and GSE4475 were used to identify the prognostic genes. The data of GSE38885, GSE34143, GSE132929, GSE58445 and GSE13996 were used to eluate the immune cell infiltration. Formalin-fixed, paraffin-embedded tissue was collected for Real Time Quantitative PCR from 30 clinical samples, including 15 EBV+ and 15 EBV- lymphoma patients. Results: Four differential genes between EBV+ and EBV- lymphoma patients were screened out with the significance of the survival and prognosis of lymphoma, including CHIT1, SIGLEC15, PLA2G2D and TMEM163. Using CIBERSORT to evaluate immune cell infiltration, we found the infiltration level of macrophages was significantly different between EBV+ and EBV- groups and was closely related to different genes. Preliminary clinical specimen verification identified that the expression levels of CHIT1 and TMEM163 were different between EBV+ and EBV- groups. Conclusions: Our data suggest that differences in expression levels of CHIT1 and TMEM163 and macrophage infiltration levels may be important drivers of poor prognosis of EBV+ lymphoma patients. These hub genes may provide new insights into the prognosis and therapeutic target for EBV+ lymphoma.

10.
J Pain Res ; 15: 985-1001, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35411184

RESUMEN

Background: Chronic postsurgical pain (CPSP) is common among patients receiving major surgeries. CPSP produces suffering in patients, both physically and mentally. However, the mechanisms underlying CPSP remain elusive. Here, a genome-wide expression profiling of ipsilateral spinal cord dorsal horn (SCDH) was performed to identify potential genes related with CPSP. Methods: A rat skin/muscle incision and retraction (SMIR) model was established to induce CPSP. Immunostaining was used to study glial cell and neuron activation in ipsilateral SCDH of SMIR model rats. RNA sequencing (RNA-Seq), combined with bioinformatics analysis, was undertaken to explore gene expression profiles. qPCR was applied to validate the expression of some representative genes. Results: The SMIR model rats developed persistent mechanical allodynia in ipsilateral hindpaw for up to 14 days. Ipsilateral SCDH of SMIR rats showed remarkable glial cell and neuron activation. A number of differentially expressed genes (DEGs) were identified in ipsilateral SCDH of SMIR rats by RNA-Seq. qPCR confirmed expression of some representative DEGs. Bioinformatics indicated that chemical synaptic transmission, sensory perception of pain and neuroactive ligand-receptor interaction were predominant functions. We compared our dataset with human pain-related genes and found that several genes exclusively participate in pain modulation and mechanisms. Conclusion: Our study provided novel understandings of the molecular mechanisms possibly contributing to CPSP. These findings may offer new targets for future treatment of CPSP.

11.
ACS Appl Mater Interfaces ; 13(28): 33218-33225, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34228914

RESUMEN

Sn-based perovskite solar cells (PSCs) have received extensive attention for photovoltaic applications. Nevertheless, the low crystallization quality of the film due to rapid crystallization results in high trap density of states, which is one of the main reasons for poor performance of Sn-based PSC devices. In this work, we developed a strategy for the formation of FASnI3 perovskites by introducing the addition of formamidine acetate (FAAc). Benefiting from the iodide-coordinated cation (FA+) and crystallization-regulated anion (AC-), FAAc could achieve the high-quality films with suppressed defects. The champion power conversion efficiency (PCE) of FAAc-modified PSC devices reached 9.96%, reserving 82% of their initial PCE of the light aging test over 1500 h. We hope that our finding could provide implications on the high-performance and stable Sn-based PSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA