Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Environ Res ; 252(Pt 2): 118833, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38599446

RESUMEN

Thiocyanate (SCN-), a non-volatile inorganic pollutant, is commonly found in various types of industrial wastewater, which is resistant to hydrolysis and has the potential to be toxic to organisms. Premagnetized iron-copper-carbon ternary micro-electrolytic filler (pre-Fe/Cu/C) was prepared to degrade SCN-. Pre-Fe/Cu/C exhibited the most significant enhancement effect on SCN- removal when magnetized for 5 min with an intensity of 100 mT, and the SCN- removal rate was the highest at an initial pH of 3.0 and an aeration rate of 1.6 L/min. The electrochemical corrosion and electron transfer in the pre-Fe/Cu/C system were confirmed through SEM, XPS, FTIR, XRD, and electrochemical tests. This resulted in the formation of more corrosion products and multiple cycles of Fe2+/Fe3+ and Cu0/Cu+/Cu2+. Additionally, density functional theory (DFT) calculations and electron paramagnetic resonance (EPR) were utilized to illustrate the oxygen adsorption properties of the materials and the participation of reactive oxygen species (1O2, ·O2-, and ·OH) in SCN- removal. The degradation products of SCN- were identified as SO42-, HCO3-, NH4+, and N2. This study introduced the use of permanent magnets for the first time to enhance Fe/Cu/C ternary micro-electrolytic fillers, offering a cost-effective, versatile, and stable approach that effectively effectively enhanced the degradation of SCN-.


Asunto(s)
Cobre , Hierro , Tiocianatos , Contaminantes Químicos del Agua , Tiocianatos/química , Cobre/química , Hierro/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Carbono/química , Corrosión
2.
Polymers (Basel) ; 15(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37112065

RESUMEN

Phosphorus is one of the important metabolic elements for living organisms, but excess phosphorus in water can lead to eutrophication. At present, the removal of phosphorus in water bodies mainly focuses on inorganic phosphorus, while there is still a lack of research on the removal of organic phosphorus (OP). Therefore, the degradation of OP and synchronous recovery of the produced inorganic phosphorus has important significance for the reuse of OP resources and the prevention of water eutrophication. Herein, a novel FeOOH-loaded aminated polyacrylonitrile fiber (PANAF-FeOOH) was constructed to enhance the removal of OP and phosphate. Taking phenylphosphonic acid (PPOA) as an example, the results indicated that modification of the aminated fiber was beneficial to FeOOH fixation, and the PANAF-FeOOH prepared with 0.3 mol L-1 Fe(OH)3 colloid had the best performance for OP degradation. The PANAF-FeOOH efficiently activated peroxydisulfate (PDS) for the degradation of PPOA with a removal efficiency of 99%. Moreover, the PANAF-FeOOH maintained high removal capacity for OP over five cycles as well as strong anti-interference in a coexisting ion system. In addition, the removal mechanism of PPOA by the PANAF-FeOOH was mainly attributed to the enrichment effect of PPOA adsorption on the fiber surface's special microenvironment, which was more conducive to contact with SO4•- and •OH generated by PDS activation. Furthermore, the PANAF-FeOOH prepared with 0.2 mol L-1 Fe(OH)3 colloid possessed excellent phosphate removal capacity with a maximal adsorption quantity of 9.92 mg P g-1. The adsorption kinetics and isotherms of the PANAF-FeOOH for phosphate were best depicted by pseudo-quadratic kinetics and a Langmuir isotherm model, showing a monolayer chemisorption procedure. Additionally, the phosphate removal mechanism was mainly due to the strong binding force of iron and the electrostatic force of protonated amine on the PANAF-FeOOH. In conclusion, this study provides evidence for PANAF-FeOOH as a potential material for the degradation of OP and simultaneous recovery of phosphate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA