Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Adv Mater ; 36(24): e2313034, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38478881

RESUMEN

Lithium metal is the ultimate anode material for pursuing the increased energy density of rechargeable batteries. However, fatal dendrites growth and huge volume change seriously hinder the practical application of lithium metal batteries (LMBs). In this work, a lithium host that preinstalled CoSe nanoparticles on vertical carbon vascular tissues (VCVT/CoSe) is designed and fabricated to resolve these issues, which provides sufficient Li plating space with a robust framework, enabling dendrite-free Li deposition. Their inherent N sites coupled with the in situ formed lithiophilic Co sites loaded at the interface of VCVT not only anchor the initial Li nucleation seeds but also accelerate the Li+ transport kinetics. Meanwhile, the Li2Se originated from the CoSe conversion contributes to constructing a stable solid-electrolyte interphase with high ionic conductivity. This optimized Li/VCVT/CoSe composite anode exhibits a prominent long-term cycling stability over 3000 h with a high areal capacity of 10 mAh cm-2. When paired with a commercial nickel-rich LiNi0.83Co0.12Mn0.05O2 cathode, the full-cell presents substantially enhanced cycling performance with 81.7% capacity retention after 300 cycles at 0.2 C. Thus, this work reveals the critical role of guiding Li deposition behavior to maintain homogeneous Li morphology and pave the way to stable LMBs.

2.
ChemSusChem ; 17(1): e202301110, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37653603

RESUMEN

Lithium-sulfur (Li-S) batteries show advantage of high theoretical capacity. However, the shuttle effect of polysulfides and sluggish sulfur redox kinetics seriously reduce their service life. Inspired by the porous structural features of biomass materials, herein, a functional interlayer is fabricated by silkworm excrement-derived three-dimensional porous carbon accommodating nano sized CoS2 particles (SC@CoS2 ). The porous carbon delivers a high specific surface area, which provides adequate adsorption sites, being responsible for suppressing the shuttle effect of polysulfides. Meanwhile, the porous carbon is favorable for hindering the aggregation of CoS2 and maintaining its high activity during extended cycles, which effectively accelerates the polysulfides conversion kinetics. Moreover, the SC@CoS2 functional interlayer effectively limits the formation of Li dendrites and promotes the uniform deposition of Li on the Li electrode surface. As a result, the CMK-3/S cathode achieves a high initial capacity of 1599.1 mAh g-1 at 0.2 C rate assisted by the polypropylene separator coated with the functional interlayer and 1208.3 mAh g-1 is maintained after the long cycling test. This work provides an insight into the designing of long-lasting catalysts for stable functional interlayer, which encourages the application of biomass-derived porous carbon in high-energy Li-S batteries.

3.
J Am Chem Soc ; 145(13): 7397-7407, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-36961942

RESUMEN

Nickel-rich layered oxides (NLOs) are considered as one of the most promising cathode materials for next-generation high-energy lithium-ion batteries (LIBs), yet their practical applications are currently challenged by the unsatisfactory cyclability and reliability owing to their inherent interfacial and structural instability. Herein, we demonstrate an approach to reverse the unstable nature of NLOs through surface solid reaction, by which the reconstructed surface lattice turns stable and robust against both side reactions and chemophysical breakdown, resulting in improved cycling performance. Specifically, conformal La(OH)3 nanoshells are built with their thicknesses controlled at nanometer accuracy, which act as a Li+ capturer and induce controlled reaction with the NLO surface lattices, thereby transforming the particle crust into an epitaxial layer with localized Ni/Li disordering, where lithium deficiency and nickel stabilization are both achieved by transforming oxidative Ni3+ into stable Ni2+. An optimized balance between surface stabilization and charge transfer is demonstrated by a representative NLO material, namely, LiNi0.83Co0.07Mn0.1O2, whose surface engineering leads to a highly improved capacity retention and excellent rate capability with a strong capability to inhibit the crack of NLO particles. Our study highlights the importance of surface chemistry in determining chemical and structural behaviors and paves a research avenue in controlling the surface lattice for the stabilization of NLOs toward reliable high-energy LIBs.

4.
ACS Appl Mater Interfaces ; 14(11): 13379-13387, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35266694

RESUMEN

The development of potassium-ion batteries (PIBs) is challenged by the shortage of stable cathode materials capable of reversibly hosting the large-sized K+ (1.38 Å), which is prone to cause severe structural degradation and complex phase evolution during the potassiation/depotassiation process. Here, we identified that anionic doping of the layered oxides for PIBs is effective to combat their capacity fading at high voltage (>4.0 V). Taking P2-type K2/3Mn7/9Ni1/9Ti1/9O17/9F1/9 (KMNTOF) as an example, we showed that the partial substitution of O2- by F- enlarged the interlayer distance of the K2/3Mn7/9Ni1/9Ti1/9O2 (KMNTO), which becomes more favorable for fast K+ transition without violent structural destruction. Meanwhile, based on the experimental data and theoretical results, we identified that the introduction of F- anions effectively increased the redox-active Mn cationic concentration by lowering the average valence of the Mn element, accordingly providing more reversible capacity derived from the Mn3+/4+ redox couple, rather than oxygen redox. This anionic doping strategy enables the KMNTOF cathode to deliver a high reversible capacity of 132.5 mAh g-1 with 0.53 K+ reversible (de)intercalation in the structure. We expect that the discovery provides new insights into structural engineering for pursuing stable cathodes to facilitate the future applications of high-performance PIBs.

5.
Chem Commun (Camb) ; 58(15): 2556-2559, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35103727

RESUMEN

A Li3PO4 nanocoating around a nickel-rich cathode material was successfully constructed via controlling the reaction between the electrode material and a preformed phosphorus-containing polymeric nanoshell; this not only effectively tackles the alkali residue challenge, but it also contributes to much-improved electrochemical performance being shown by a high-energy cathode.

6.
Hepatology ; 76(1): 66-77, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35007334

RESUMEN

BACKGROUND AND AIMS: The study objective was to compare the effectiveness of microwave ablation (MWA) and laparoscopic liver resection (LLR) on solitary 3-5-cm HCC over time. APPROACH AND RESULTS: From 2008 to 2019, 1289 patients from 12 hospitals were enrolled in this retrospective study. Diagnosis of all lesions were based on histopathology. Propensity score matching was used to balance all baseline variables between the two groups in 2008-2019 (n = 335 in each group) and 2014-2019 (n = 257 in each group) cohorts, respectively. For cohort 2008-2019, during a median follow-up of 35.8 months, there were no differences in overall survival (OS) between MWA and LLR (HR: 0.88, 95% CI 0.65-1.19, p = 0.420), and MWA was inferior to LLR regarding disease-free survival (DFS) (HR 1.36, 95% CI 1.05-1.75, p = 0.017). For cohort 2014-2019, there was comparable OS (HR 0.85, 95% CI 0.56-1.30, p = 0.460) and approached statistical significance for DFS (HR 1.33, 95% CI 0.98-1.82, p = 0.071) between MWA and LLR. Subgroup analyses showed comparable OS in 3.1-4.0-cm HCCs (HR 0.88, 95% CI 0.53-1.47, p = 0.630) and 4.1-5.0-cm HCCs (HR 0.77, 95% CI 0.37-1.60, p = 0.483) between two modalities. For both cohorts, MWA shared comparable major complications (both p > 0.05), shorter hospitalization, and lower cost to LLR (all p < 0.001). CONCLUSIONS: MWA might be a first-line alternative to LLR for solitary 3-5-cm HCC in selected patients with technical advances, especially for patients unsuitable for LLR.


Asunto(s)
Carcinoma Hepatocelular , Ablación por Catéter , Laparoscopía , Neoplasias Hepáticas , Carcinoma Hepatocelular/patología , Hepatectomía , Humanos , Neoplasias Hepáticas/patología , Microondas/uso terapéutico , Puntaje de Propensión , Estudios Retrospectivos , Resultado del Tratamiento
7.
J Am Chem Soc ; 144(5): 2179-2188, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35080388

RESUMEN

The application of solid-state batteries (SSBs) is challenged by the inherently poor interfacial contact between the solid-state electrolyte (SSE) and the electrodes, typically a metallic lithium anode. Building artificial intermediate nanofilms is effective in tackling this roadblock, but their implementation largely relies on vapor-based techniques such as atomic layer deposition, which are expensive, energy-intensive, and time-consuming due to the monolayer deposited per cycle. Herein, an easy and low-cost wet-chemistry fabrication process is used to engineer the anode/solid electrolyte interface in SSBs with nanoscale precision. This coordination-assisted deposition is initiated with polyacrylate acid as a functional polymer to control the surface reaction, which modulates the distribution and decomposition of metal precursors to reliably form a uniform crack-free and flexible nanofilm of a large variety of metal oxides. For demonstration, artificial Al2O3 interfacial nanofilms were deposited on a ceramic SSE, typically garnet-structured Li6.5La3Zr1.5Ta0.5O12 (LLZT), that led to a significant decrease in the Li/LLZT interfacial resistance (from 2079.5 to 8.4 Ω cm2) as well as extraordinarily long cycle life of the assembled SSBs. This strategy enables the use of a nickel-rich LiNi0.83Co0.07Mn0.1O2 cathode to deliver a reversible capacity of 201.5 mAh g-1 at a considerable loading of 4.8 mg cm-2, featuring performance metrics for an SSB that is competitive with those of traditional Li-ion systems. Our study demonstrates the potential of solution-based routes as an affordable and scalable manufacturing alternative to vapor-based deposition techniques that can accelerate the development of SSBs for practical applications.

8.
Front Surg ; 8: 667154, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34355011

RESUMEN

Background: Tumor status can affect patient prognosis. Prognostic nutritional index (PNI), as a nutritional indicator, is closely related to the prognosis of cancer. However, few studies have examined the combined prognostic value of CEA and PNI in patients. This study investigated the relationship between CEA/PNI and prognosis of colon cancer patients. Methods: A total of 513 patients with stage II-III colon cancer who underwent curative resection at two medical centers from 2009 to 2019 were included. Clinicopathological factors were assessed and overall survival (OS) was assessed in a cohort of 413 patients. Multivariate analysis was used to identify independent prognostic variables to construct histograms predicting 1-year and 3-year OS. Data from 100 independent patients in the validation group was used to validate the prognostic model. Results: The median OS time was 33.6 months, and mortality was observed in 54 patients. Multivariate analysis revealed that preoperative CEA/PNI, lymph node metastasis, peripheral nerve invasion, operation mode, and postoperative chemotherapy were independent factors for prognosis evaluation and thus were utilized to develop the nomogram. The C-index was 0.788 in the learning set and 0.836 in the validation set. The calibration curves reached favorable consensus among the 1-, 3-year OS prediction and actual observation. Conclusion: The combined use of CEA and PNI is an independent prognostic factor and thus can serve as a basis for a model to predict the prognosis of patients with stage II-III colon cancer.

9.
Adv Mater ; 33(36): e2100409, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34270806

RESUMEN

Due to the obvious advantage in potassium reserves, potassium-ion batteries (PIBs) are now receiving increasing research attention as an alternative energy storage system for lithium-ion batteries (LIBs). Unfortunately, the large size of K+ makes it a challenging task to identify suitable electrode materials, particularly cathode ones that determine the energy density of PIBs, capable of tolerating the serious structural deformation during the continuous intercalation/deintercalation of K+ . It is therefore of paramount importance that proper design principles of cathode materials be followed to ensure stable electrochemical performance if a practical application of PIBs is expected. Herein, the current knowledge on the structural engineering of cathode materials acquired during the battle against its performance degradation is summarized. The K+ storage behavior of different types of cathodes is discussed in detail and the structure-performance relationship of materials sensitive to their different lattice frameworks is highlighted. The key issues facing the future development of different categories of cathode materials are also highlighted and perspectives for potential approaches and strategies to promote the further development of PIBs are provided.

10.
Acc Chem Res ; 54(1): 221-231, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33284018

RESUMEN

Hollow carbon-based nanospheres (HCNs) have been demonstrated to show promising potential in a large variety of research fields, particularly electrochemical devices for energy conversion/storage. The current synthetic protocols for HCNs largely rely on template-based routes (TBRs), which are conceptually straightforward in creating hollow structures but challenged by the time-consuming operations with a low yield in product as well as serious environmental concerns caused by hazardous etching agents. Meanwhile, they showed inadequate ability to build complex carbon-related architectures. Innovative strategies for HCNs free from extra templates thus are highly desirable and are expected to not only ensure precise control of the key structural parameters of hollow architectures with designated functionalities, but also be environmentally benign and scalable approaches suited for their practical applications.In this Account, we outline our recent research progress on the development of template-free protocols for the creation of HCNs with a focus on the acquired mechanical insight into the hollowing mechanism when no extra templates were involved. We demonstrated that carbon-based particles themselves could act as versatile platforms to create hollow architectures through an effective modulation of their inner chemistry. By means of reaction control, the precursor particles were synthesized into solid ones with a well-designed inhomogeneity inside in the form of different chemical parameters such as molecular weight, crystallization degree, and chemical reactivity, by which we not only can create hollow structures inside particles but also have the ability to tune the key features including compositions, porosity, and dimensional architectures. Accordingly, the functionalities of the prepared HCNs could be systematically altered or optimized for their applications. Importantly, the discussed synthesis approaches are facile and environmentally benign processes with potential for scale-up production.The nanoengineering of HNCs is found to be of special importance for their application in a large variety of electrochemical energy storage and conversion systems where the charge transfer and structural stability become a serious concern. Particular attention in this Account is therefore directed to the potential of HCNs in battery systems such as sodium ion batteries (NIBs) and potassium ion batteries (KIBs), whose electrochemical performances are plagued by the destructive volumetric deformation and sluggish charge diffusion during the intercalation/deintercalation of large-size Na+ or K+. We demonstrated that precise control of the multidimensional factors of the HCNs is critical to offer an optimized design of sufficient reactive sites, excellent charge and mass transport kinetics, and resilient electrode structure and also provide a model system suitable for the study of complicated metal-ion storage mechanisms, such as Na+ storage in a hard carbon anode. We expect that this Account will spark new endeavors in the development of HCNs for various applications including energy conversion and storage, catalysis, biomedicine, and adsorption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA