Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
2.
Adv Sci (Weinh) ; 11(12): e2304342, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38229183

RESUMEN

Immunotherapy targeting PD-L1 is still ineffective for a wide variety of tumors with high unpredictability. Deploying combined immunotherapy with alternative targeting is practical to overcome this therapeutic resistance. Here, the deficiency of serine-threonine kinase STK24 is observed in tumor cells causing substantial attenuation of tumor growth in murine syngeneic models, a process relying on cytotoxic CD8+ T and NK cells. Mechanistically, STK24 in tumor cells associates with and directly phosphorylates AKT at Thr21, which promotes AKT activation and subsequent PD-L1 induction. Deletion or inhibition of STK24, by contrast, blocks IFN-γ-mediated PD-L1 expression. Various murine models indicate that in vivo silencing of STK24 can significantly enhance the efficacy of the anti-PD-1 blockade strategy. Elevated STK24 levels are observed in patient specimens in multiple tumor types and inversely correlated with intratumoral infiltration of cytotoxic CD8+ T cells and with patient survival. The study collectively identifies STK24 as a critical modulator of antitumor immunity, which engages in AKT and PD-L1/PD-1 signaling and is a promising target for combined immunotherapy.


Asunto(s)
Antígeno B7-H1 , Linfocitos T CD8-positivos , Humanos , Animales , Ratones , Antígeno B7-H1/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Escape del Tumor , Línea Celular Tumoral
5.
J Transl Int Med ; 11(4): 341-354, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38130647

RESUMEN

Microvesicles known as exosomes have a diameter of 40 to 160 nm and are derived from small endosomal membranes. Exosomes have attracted increasing attention over the past ten years in part because they are functional vehicles that can deliver a variety of lipids, proteins, and nucleic acids to the target cells they encounter. Because of this function, exosomes may be used for the diagnosis, prognosis and treatment of many diseases. All throughout the world, cardiovascular diseases (CVDs) continue to be a significant cause of death. Because exosomes are mediators of communication between cells, which contribute to many physiological and pathological aspects, they may aid in improving CVD therapies as biomarkers for diagnosing and predicting CVDs. Many studies demonstrated that exosomes are associated with CVDs, such as coronary artery disease, heart failure, cardiomyopathy and atrial fibrillation. Exosomes participate in the progression or inhibition of these diseases mainly through the contents they deliver. However, the application of exosomes in diferent CVDs is not very mature. So further research is needed in this field.

6.
Front Cell Dev Biol ; 11: 1186850, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37228652

RESUMEN

Hematopoietic stem cells (HSCs) are important for the hematopoietic system because they can self-renew to increase their number and differentiate into all the blood cells. At a steady state, most of the HSCs remain in quiescence to preserve their capacities and protect themselves from damage and exhaustive stress. However, when there are some emergencies, HSCs are activated to start their self-renewal and differentiation. The mTOR signaling pathway has been shown as an important signaling pathway that can regulate the differentiation, self-renewal, and quiescence of HSCs, and many types of molecules can regulate HSCs' these three potentials by influencing the mTOR signaling pathway. Here we review how mTOR signaling pathway regulates HSCs three potentials, and introduce some molecules that can work as the regulator of HSCs' these potentials through the mTOR signaling. Finally, we outline the clinical significance of studying the regulation of HSCs three potentials through the mTOR signaling pathway and make some predictions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA