Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Dent Mater ; 40(4): 674-688, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38388252

RESUMEN

OBJECTIVE: Polyetheretherketone (PEEK), a biomaterial with appropriate bone-like mechanical properties and excellent biocompatibility, is widely applied in cranio-maxillofacial and dental applications. However, the lack of antibacterial effect is an essential drawback of PEEK material and might lead to infection and osseointegration issues. This study aims to apply a natural antibacterial agent, totarol coating onto the 3D printed PEEK surface and find an optimized concentration with balanced cytocompatibility, osteogenesis, and antibacterial capability. METHODS: In this study, a natural antibacterial agent, totarol, was applied as a coating to fused filament fabrication (FFF) 3D printed PEEK surfaces at a series of increasing concentrations (1 mg/ml, 5 mg/ml, 10 mg/ml, 15 mg/ml, and 20 mg/ml). The samples were then evaluated for cytocompatibility with L929 fibroblast and SAOS-2 osteoblast using live/dead staining and CCK-8 assay. The antibacterial capability was assessed by crystal violet staining, live/dead staining, and scanning electron microscopy (SEM) utilizing the oral primary colonizer S. gordonii and isolates of mixed oral bacteria in a stirring system simulating the oral environment. The appropriate safe working concentration for totarol coating is selected based on the results of the cytocompatibility and antibacterial test. Subsequently, the influence on osteogenic differentiation was evaluated by alkaline phosphatase (ALP) and alizarin red staining (ARS) analysis of pre-osteoblasts. RESULTS: Our results showed that the optimal concentration of totarol solution for promising antibacterial coating was approximately 10 mg/ml. Such surfaces could play an excellent antibacterial role by inducing a contact-killing effect with an inhibitory effect against biofilm development without affecting the healing of soft and hard tissues around FFF 3D printed PEEK implants or abutments. SIGNIFICANCE: This study indicates that the totarol coated PEEK has an improved antibacterial effect with excellent biocompatibility providing great clinical potential as an orthopedic/dental implant/abutment material.


Asunto(s)
Abietanos , Benzofenonas , Implantes Dentales , Osteogénesis , Polímeros , Polietilenglicoles/farmacología , Polietilenglicoles/química , Cetonas/farmacología , Cetonas/química , Antibacterianos/farmacología , Antibacterianos/química , Impresión Tridimensional , Propiedades de Superficie
2.
Adv Sci (Weinh) ; 11(17): e2309491, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38380490

RESUMEN

The regeneration of bone defects in diabetic patients still faces challenges, as the intrinsic healing process is impaired by hyperglycemia. Inspired by the discovery that the endoplasmic reticulum (ER) is in a state of excessive stress and dysfunction under hyperglycemia, leading to osteogenic disorder, a novel engineered exosome is proposed to modulate ER homeostasis for restoring the function of mesenchymal stem cells (MSCs). The results indicate that the constructed engineered exosomes efficiently regulate ER homeostasis and dramatically facilitate the function of MSCs in the hyperglycemic niche. Additionally, the underlying therapeutic mechanism of exosomes is elucidated. The results reveal that exosomes can directly provide recipient cells with SHP2 for the activation of mitophagy and elimination of mtROS, which is the immediate cause of ER dysfunction. To maximize the therapeutic effect of engineered exosomes, a high-performance hydrogel with self-healing, bioadhesive, and exosome-conjugating properties is applied to encapsulate the engineered exosomes for in vivo application. In vivo, evaluation in diabetic bone defect repair models demonstrates that the engineered exosomes delivering hydrogel system intensively enhance osteogenesis. These findings provide crucial insight into the design and biological mechanism of ER homeostasis-based tissue-engineering strategies for diabetic bone regeneration.


Asunto(s)
Regeneración Ósea , Retículo Endoplásmico , Exosomas , Homeostasis , Hidrogeles , Células Madre Mesenquimatosas , Exosomas/metabolismo , Regeneración Ósea/fisiología , Regeneración Ósea/genética , Animales , Homeostasis/fisiología , Hidrogeles/química , Ratones , Retículo Endoplásmico/metabolismo , Células Madre Mesenquimatosas/metabolismo , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Osteogénesis/fisiología , Modelos Animales de Enfermedad , Ingeniería de Tejidos/métodos , Masculino , Humanos
3.
Sci Data ; 11(1): 43, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184632

RESUMEN

The faithful transmission of a cell's identity and functionality to its daughters during mitosis requires the proper assembly of mitotic chromosomes from interphase chromatin in a process that involves significant changes in the genome-bound material, including the RNA. However, our understanding of the RNA that is associated with the mitotic chromosome is presently limited. Here, we present complete and quantitative characterizations of the full-length mitotic chromosome-associated RNAs (mCARs) for 3 human cell lines, a monkey cell line, and a mouse cell line derived from high-depth RNA sequencing (3 replicates, 47 M mapped read pairs for each replicate). Overall, we identify, on average, more than 20,400 mCAR species per cell-type (including isoforms), more than 5,200 of which are enriched on the chromosome. Notably, overall, more than 2,700 of these mCARs were previously unknown, which thus also expands the annotated genome of these species. We anticipate that these datasets will provide an essential resource for future studies to better understand the functioning of mCARs on the mitotic chromosome and in the cell.


Asunto(s)
Cromatina , Mamíferos , ARN , Animales , Humanos , Ratones , Línea Celular , Mitosis
4.
Biosci Trends ; 17(5): 393-400, 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37778979

RESUMEN

The histone variant macroH2A has been found to play important regulatory roles in genomic processes, especially in regulating transcriptomes. However, whether macroH2A nucleosomes are retained on mitotic chromosomes to enable maintenance of cell-specific transcriptomes is not known. Here, examining mouse embryonic fibroblast cells (NIH-3T3) with native chromatin immunoprecipitation and sequencing (nChIP-seq), we show that the overwhelming majority (~90%) of macroH2A1 domains identified at the G1/S stage are indeed stably retained on mitotic chromosomes. Unexpectedly though, we also find that there are a number of macroH2A domains that are specific for either mitotic or G1/S cells. Notably, more than 7,000 interphase expressed genes flanked by macroH2A1 domains are loaded with macroH2A1 nucleosomes on the mitotic chromosome to form extended domains. Overall, these results reveal that, while the majority of macroH2A1 domains are indeed faithfully transmitted through the mitotic chromosomes, there is a previously unknown cell-cycle dependent exchange of macroH2A1 nucleosomes at numerous genomic loci, indicating the existence of molecular machineries for this dynamically regulated process. We anticipate that these findings will prove to be essential for the integrity of mitotic progression and the maintenance of cellular identity.


Asunto(s)
Histonas , Nucleosomas , Animales , Ratones , Histonas/genética , Nucleosomas/genética , Fibroblastos , Ciclo Celular/genética , División Celular , Mamíferos
5.
Bioact Mater ; 25: 239-255, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36817824

RESUMEN

Type II diabetes mellitus (TIIDM) remains a challenging clinical issue for both dentists and orthopedists. By virtue of persistent hyperglycemia and altered host metabolism, the pathologic diabetic micromilieu with chronic inflammation, advanced glycation end products accumulation, and attenuated biomineralization severely impairs bone regeneration efficiency. Aiming to "remodel" the pathologic diabetic micromilieu, we 3D-printed bioscaffolds composed of Sr-containing mesoporous bioactive glass nanoparticles (Sr-MBGNs) and gelatin methacrylate (GelMA). Sr-MBGNs act as a biomineralization precursor embedded in the GelMA-simulated extracellular matrix and release Sr, Ca, and Si ions enhancing osteogenic, angiogenic, and immunomodulatory properties. In addition to angiogenic and anti-inflammatory outcomes, this innovative design reveals that the nanocomposites can modulate extracellular matrix reconstruction and simulate biomineralization by activating lysyl oxidase to form healthy enzymatic crosslinked collagen, promoting cell focal adhesion, modulating osteoblast differentiation, and boosting the release of OCN, the noncollagenous proteins (intrafibrillar mineralization dependent), and thus orchestrating osteogenesis through the Kindlin-2/PTH1R/OCN axis. This 3D-printed bioscaffold provides a multifunctional biomineralization-inspired system that remodels the "barren" diabetic microenvironment and sheds light on the new bone regeneration approaches for TIIDM.

6.
FEBS Lett ; 597(3): 418-426, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36285639

RESUMEN

Whole-organ transcriptomic analyses have emerged as a common method for characterizing developmental transitions in mammalian organs. However, it is unclear if all cell types in an organ follow the whole-organ defined developmental trajectory. Recently, a postnatal two-stage developmental process was described for the mouse stomach. Here, using laser capture microdissection to obtain in situ transcriptomic data, we show that mouse gastric pit cells exhibit four postnatal developmental stages. Interestingly, early stages are characterized by the up-regulation of genes associated with metabolism, a functionality not typically associated with pit cells. Hence, beyond revealing that not all constituent cells develop according to the whole-organ determined pathway, these results broaden our understanding of the pit cell phenotypic landscape during stomach development.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Animales , Ratones , Perfilación de la Expresión Génica/métodos , Mucosa Gástrica , Captura por Microdisección con Láser/métodos , Mamíferos
7.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36555471

RESUMEN

The activation of monocytes and their trans-differentiation into macrophages are critical processes of the immune response. Prior work has characterized the differences in the expression between monocytes and macrophages, but the transitional process between these cells is poorly detailed. Here, we analyzed the temporal changes of the transcriptome during trans-differentiation of primary human monocytes into M0 macrophages. We find changes with many transcription factors throughout the process, the vast majority of which exhibit a maximally different expression at the intermediate stages. A few factors, including AP-1, were previously known to play a role in immunological transitions, but most were not. Thus, these findings indicate that this trans-differentiation requires the dynamic expression of many transcription factors not previously discussed in immunology, and provide a foundation for the delineation of the molecular mechanisms associated with healthy or pathological responses that involve this transition.


Asunto(s)
Monocitos , Factores de Transcripción , Humanos , Monocitos/metabolismo , Factores de Transcripción/metabolismo , Macrófagos/metabolismo , Diferenciación Celular/fisiología , Transdiferenciación Celular/genética
8.
BMC Genomics ; 23(1): 547, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35915415

RESUMEN

BACKGROUND: OSCA (hyperosmolality-gated calcium-permeable channel) is a calcium permeable cation channel protein that plays an important role in regulating plant signal transduction. It is involved in sensing changes in extracellular osmotic potential and an increase in Ca2+ concentration. S. habrochaites is a good genetic material for crop improvement against cold, late blight, planthopper and other diseases. Till date, there is no report on OSCA in S. habrochaites. Thus, in this study, we performed a genome-wide screen to identify OSCA genes in S. habrochaites and characterized their responses to biotic and abiotic stresses. RESULTS: A total of 11 ShOSCA genes distributed on 8 chromosomes were identified. Subcellular localization analysis showed that all members of ShOSCA localized on the plasma membrane and contained multiple stress-related cis acting elements. We observed that genome-wide duplication (WGD) occurred in the genetic evolution of ShOSCA5 (Solhab04g250600) and ShOSCA11 (Solhab12g051500). In addition, repeat events play an important role in the expansion of OSCA gene family. OSCA gene family of S. habrochaites used the time lines of expression studies by qRT-PCR, do indicate OSCAs responded to biotic stress (Botrytis cinerea) and abiotic stress (drought, low temperature and abscisic acid (ABA)). Among them, the expression of ShOSCAs changed significantly under four stresses. The resistance of silencing ShOSCA3 plants to the four stresses was reduced. CONCLUSION: This study identified the OSCA gene family of S. habrochaites for the first time and analyzed ShOSCA3 has stronger resistance to low temperature, ABA and Botrytis cinerea stress. This study provides a theoretical basis for clarifying the biological function of OSCA, and lays a foundation for tomato crop improvement.


Asunto(s)
Solanum , Botrytis , Calcio/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum/genética , Solanum/metabolismo , Estrés Fisiológico/genética
9.
Dent Mater ; 38(7): 1083-1098, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35562293

RESUMEN

OBJECTIVE: The objective of this study was to determine the effect of two plasma surface treatments on the biologic responses of PEEK medical implants manufactured by fused filament fabrication (FFF) 3D printing technology. METHODS: This study created standard PEEK samples using an FFF 3D printer. After fabrication, half of the samples were polished to simulate a smooth PEEK surface. Then, argon (Ar) or oxygen (O2) plasma was used to modify the bioactivity of FFF 3D printed and polished PEEK samples. Scanning electron microscopy (SEM) and a profilometer were used to determine the microstructure and roughness of the sample surfaces. The wettability of the sample surface was assessed using a drop shape analyzer (DSA) after plasma treatment and at various time points following storage in a closed environment. Cell adhesion, metabolic activity, proliferation, and osteogenic differentiation of SAOS-2 osteoblasts were evaluated to determine the in vitro osteogenic activity. RESULTS: SEM analysis revealed that several spherical nanoscale particles and humps appeared on sample surfaces following plasma treatment. The wettability measurement demonstrated that plasma surface treatment significantly increased the surface hydrophilicity of PEEK samples, with only a slight aging effect found after 21 days. Cell adhesion, spreading, proliferation, and differentiation of SAOS-2 osteoblasts were also up-regulated after plasma treatment. Additionally, PEEK samples treated with O2 plasma demonstrated a higher degree of bioactivation than those treated with Ar. SIGNIFICANCE: Plasma-modified PEEK based on FFF 3D printing technology was a feasible and prospective bone grafting material for bone/dental implants.


Asunto(s)
Productos Biológicos , Implantes Dentales , Argón , Benzofenonas , Cetonas/química , Osteogénesis , Polietilenglicoles/química , Polímeros , Impresión Tridimensional , Estudios Prospectivos , Propiedades de Superficie
10.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638960

RESUMEN

Many current-generation biomedical implants are fabricated from the Ti-6Al-4V alloy because it has many attractive properties, such as low density and biocompatibility. However, the elastic modulus of this alloy is much larger than that of the surrounding bone, leading to bone resorption and, eventually, implant failure. In the present study, we synthesized and performed a detailed analysis of a novel low elastic modulus Ti-based alloy (Ti-28Nb-5Zr-2Ta-2Sn (TNZTS alloy)) using a variety of methods, including scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and tensile test. Additionally, the in vitro biocompatibility of the TNZTS alloy was evaluated using SCP-1, SaOs-2, and THP-1 cell lines and primary human osteoblasts. Compared to Ti-6Al-4V, the elastic modulus of TNZTS alloy was significantly lower, while measures of its in vitro biocompatibility are comparable. O2 plasma treatment of the surface of the alloy significantly increased its hydrophilicity and, hence, its in vitro biocompatibility. TNZTS alloy specimens did not induce the release of cytokines by macrophages, indicating that such scaffolds would not trigger inflammatory responses. The present results suggest that the TNZTS alloy may have potential as an alternative to Ti-6Al-4V.


Asunto(s)
Aleaciones/química , Aleaciones/síntesis química , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Niobio/química , Tantalio/química , Estaño/química , Titanio/química , Circonio/química , Aleaciones/farmacología , Materiales Biocompatibles/farmacología , Módulo de Elasticidad , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Ensayo de Materiales/métodos , Osteoblastos/efectos de los fármacos , Prótesis e Implantes , Propiedades de Superficie , Células THP-1 , Resistencia a la Tracción , Titanio/farmacología
11.
Nanomaterials (Basel) ; 11(3)2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33668192

RESUMEN

Bioactive glass nanoparticles (BGNs) are emerging multifunctional building blocks for various biomedical applications. In this study, the primary aim was to develop monodispersed binary SiO2-CaO BGNs with controllable Ca content. We successfully synthesized such spherical BGNs (size ~110 nm) using a modified Stöber method. Our results showed that the incorporated Ca did not significantly affect particle size, specific surface area, and structure of BGNs. Concentrations of CaO in BGN compositions ranging from 0 to 10 mol% could be obtained without the gap between actual and nominal compositions. For this type of BGNs (specific surface area 30 m2/g), the maximum concentration of incorporated CaO appeared to be ~12 mol%. The influence of Ca content on protein adsorption was investigated using bovine serum albumin (BSA) and lysozyme as model proteins. The amount of adsorbed proteins increased over time at the early stage of adsorption (<2 h), regardless of glass composition and protein type. Further incubation of BGNs with protein-containing solutions seemed to induce a reduced amount of adsorbed proteins, which was more significant in BGNs with higher Ca content. The results indicate that the Ca content in BGNs is related to their protein adsorption behavior.

12.
Mater Sci Eng C Mater Biol Appl ; 119: 111594, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33321638

RESUMEN

Zinc (Zn) and its alloys have been considered promising absorbable metals for medical implants. However, the dynamic interaction between Zn-based materials and human blood after implantation remains unclear. In this study, a modified Chandler-Loop system was applied to assess the blood compatibility and initial degradation behavior of a Zn-4.0Cu (wt%) alloy (Zn-4Cu) and Zn with human peripheral blood under circulation conditions. In this dynamic in vitro model, the Zn-4Cu and Zn showed sufficient blood compatibility. The numbers of erythrocytes, platelets, and leukocytes were not significantly altered, and appropriate activations of the coagulation and complement system were observed. Concerning initial degradation behavior, the product layers formed on the surfaces comprise a mixture of organic and inorganic compounds while the inorganic constituents decrease toward the outer surface. Considering the corrosion morphology and electrochemical behaviors, Zn-4Cu exhibited milder and more uniform degradation than Zn. Additionally, long-term degradation tests of 28 days in human peripheral blood, human serum, and Dulbecco's phosphate-buffered saline (DPBS) demonstrated that the Zn-4Cu showed relatively uniform degradation in blood and serum. On the contrary, in DPBS, severe localized corrosion appeared along the grain boundary of the secondary phase, which was likely attributed to the acceleration of galvanic corrosion. The Zn was found with localized corrosion impeded in the blood albeit with apparently developed deep pitting holes in the serum and DPBS.


Asunto(s)
Aleaciones , Zinc , Implantes Absorbibles , Materiales Biocompatibles , Corrosión , Humanos , Ensayo de Materiales
13.
Mater Sci Eng C Mater Biol Appl ; 110: 110701, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32204015

RESUMEN

Peri-implantitis is the most important issue threatening the long-term survival rate of dental implants. Various efforts have been made to reduce implant surface plaque formation, which is one of the essential causes of peri-implantitis. In our study, we applied the natural antibacterial agent totarol as a coating on experimental silicon wafer and titanium implant surfaces. To analyze the interaction between the totarol coating and the oral primary colonizer S. gordonii and isolates of mixed oral bacteria, samples were incubated in a model system simulating the oral environment and analyzed by Live/Dead staining, crystal violet staining and scanning electron microscopy (SEM). After 4 d, 8 d, 12 d, 16 d, and 24 d salivary incubation, the stability and antibacterial efficiency of totarol coating was evaluated through SEM. The results indicated that totarol coatings on both silicon wafer and Ti surfaces caused efficient contact killing and an inhibition effect towards S. gordonii and mixed oral bacterial film growth after 4 h, 8 h, 24 h, and 48 h incubation. After longtime salivary incubation of 12 d, the bactericidal effect started to weaken, but the anti-adhesion and inhibition effect to biofilm development still exist after 24 d of salivary incubation. The application of a totarol coating on implant or abutment surfaces is a promising potential prophylactic approach against peri-implantitis.


Asunto(s)
Abietanos/química , Antibacterianos/química , Periimplantitis/prevención & control , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Materiales Biocompatibles Revestidos/química , Implantes Dentales/microbiología , Humanos , Microscopía Electrónica de Rastreo/métodos , Periimplantitis/microbiología , Saliva/microbiología , Streptococcus gordonii/efectos de los fármacos , Propiedades de Superficie/efectos de los fármacos , Titanio/química
14.
J Clin Med ; 8(6)2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31159171

RESUMEN

Polyetheretherketone (PEEK) is a prime candidate to replace metallic implants and prostheses in orthopedic, spine and cranio-maxillofacial surgeries. Fused-filament fabrication (FFF) is an economical and efficient three-dimensional (3D) printing method to fabricate PEEK implants. However, studies pertaining to the bioactivity of FFF 3D printed PEEK are still lacking. In this study, FFF 3D printed PEEK samples were fabricated and modified with polishing and grit-blasting (three alumina sizes: 50, 120, and 250 µm) to achieve varying levels of surface roughness. In vitro cellular response of a human osteosarcoma cell line (SAOS-2 osteoblasts, cell adhesion, metabolic activity, and proliferation) on different sample surfaces of untreated, polished, and grit-blasted PEEK were evaluated. The results revealed that the initial cell adhesion on different sample surfaces was similar. However, after 5 days the untreated FFF 3D printed PEEK surfaces exhibited a significant increase in cell metabolic activity and proliferation with a higher density of osteoblasts compared with the polished and grit-blasted groups (p < 0.05). Therefore, untreated FFF 3D printed PEEK with high surface roughness and optimal printing structures might have great potential as an appropriate alloplastic biomaterial for reconstructive cranio-maxillofacial surgeries.

15.
Biosens Bioelectron ; 129: 198-207, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30721795

RESUMEN

Bacteria adhering to implanted medical devices can cause invasive microbial infections, of e.g. skin, lung or blood. In dentistry, Streptococcus gordonii is an early oral colonizer initiating dental biofilm formation and also being involved in life-threatening infective endocarditis. To treat oral biofilms, antibacterial mouth rinses are commonly used. Such initial biomaterial-bacteria interactions and the influence of antibacterial treatments are poorly understood and investigated here in situ by quartz crystal microbalance with dissipation monitoring (QCM-D). A saliva-coated titanium (Ti) biosensor is applied to analyze possible specific signal patterns indicating microbial binding mechanisms and bactericide-caused changes in bacterial film rigidity or cell leakage caused by a clinically relevant antibacterial agent (ABA), i.e., a mouth rinse comprising chlorhexidine (CHX) and cetylpyridinium chloride (CPC). Apparent missing mass effects during the formation of microscopically proven dense and vital bacterial films indicate punctual, specific binding of S. gordonii to the saliva-coated biosensor, compared to unspecific adhesion to pure Ti. Coincidentally to ABA-induced killing of surface-adhered bacteria, an increase of adsorbed dissipative mass can be sensed, contrary to the prior mass-loss. This suggests the acoustic sensing of the leakage of cellular content caused by bacterial cell wall rupturing and membrane damage upon the bactericidal attack. The results have significant implications for testing bacterial adhesion mechanisms and cellular integrity during interaction with antibacterial agents.


Asunto(s)
Antiinfecciosos Locales/farmacología , Adhesión Bacteriana/efectos de los fármacos , Cetilpiridinio/farmacología , Clorhexidina/farmacología , Tecnicas de Microbalanza del Cristal de Cuarzo/instrumentación , Streptococcus gordonii/efectos de los fármacos , Biopelículas/efectos de los fármacos , Técnicas Biosensibles/instrumentación , Diseño de Equipo , Humanos , Viabilidad Microbiana/efectos de los fármacos , Saliva/microbiología , Infecciones Estreptocócicas/microbiología , Streptococcus gordonii/fisiología , Titanio/química
16.
Front Plant Sci ; 8: 1458, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28878795

RESUMEN

Covalent attachment of the small ubiquitin-related modifier, SUMO, to substrate proteins plays a significant role in plants under stress conditions, which can alter target proteins' function, location, and protein-protein interactions. Despite this importance, information about SUMOylation in the major legume crop, soybean, remains obscure. In this study, we performed a bioinformatics analysis of the entire soybean genome and identified 40 genes belonged to six families involved in a cascade of enzymatic reactions in soybean SUMOylation system. The cis-acting elements analysis revealed that promoters of SUMO pathway genes contained different combinations of stress and development-related cis-regulatory elements. RNA-seq data analysis showed that SUMO pathway components exhibited versatile tissue-specific expression patterns, indicating coordinated functioning during plant growth and development. qRT-PCR analysis of 13 SUMO pathway members indicated that majority of the SUMO pathway members were transcriptionally up-regulated by NaCl, heat and ABA stimuli during the 24 h period of treatment. Furthermore, SUMOylation dynamics in soybean roots under abiotic stress treatment were analyzed by western blot, which were characterized by regulation of SUMOylated proteins. Collectively, this study defined the organization of the soybean SUMOylation system and implied an essential function for SUMOylation in soybean abiotic stress responses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA