Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Diabetes ; 71(12): 2612-2631, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36170671

RESUMEN

Transcriptional and functional cellular specialization has been described for insulin-secreting ß-cells of the endocrine pancreas. However, it is not clear whether ß-cell heterogeneity is stable or reflects dynamic cellular states. We investigated the temporal kinetics of endogenous insulin gene activity using live cell imaging, with complementary experiments using FACS and single-cell RNA sequencing, in ß-cells from Ins2GFP knockin mice. In vivo staining and FACS analysis of islets from Ins2GFP mice confirmed that at a given moment, ∼25% of ß-cells exhibited significantly higher activity at the evolutionarily conserved insulin gene, Ins2. Live cell imaging over days captured Ins2 gene activity dynamics in single ß-cells. Autocorrelation analysis revealed a subset of oscillating cells, with mean oscillation periods of 17 h. Increased glucose concentrations stimulated more cells to oscillate and resulted in higher average Ins2 gene activity per cell. Single-cell RNA sequencing showed that Ins2(GFP)HIGH ß-cells were enriched for markers of ß-cell maturity. Ins2(GFP)HIGH ß-cells were also significantly less viable at all glucose concentrations and in the context of endoplasmic reticulum stress. Collectively, our results demonstrate that the heterogeneity of insulin production, observed in mouse and human ß-cells, can be accounted for by dynamic states of insulin gene activity.


Asunto(s)
Células Secretoras de Insulina , Islotes Pancreáticos , Ratones , Humanos , Animales , Insulina/genética , Estrés del Retículo Endoplásmico , Glucosa/farmacología
2.
Stem Cell Reports ; 15(5): 1026-1036, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33176121

RESUMEN

Androgen receptor (AR) plays a fundamental role in most aspects of adult prostate homeostasis, and anti-androgen therapy represents the cornerstone of prostate cancer treatment. However, early prostate organogenesis takes place during pre-pubertal stages when androgen levels are low, raising the possibility that AR function is more limited during prostate development. Here, we use inducible AR deletion and lineage tracing in genetically engineered mice to show that basal and luminal epithelial progenitors do not require cell-autonomous AR activity during prostate development. We also demonstrate the existence of a transient bipotent luminal progenitor that can generate luminal and basal progeny, yet is also independent of AR function. Furthermore, molecular analyses of AR-deleted luminal cells isolated from developing prostates indicate their similarity to wild-type cells. Our findings suggest that low androgen levels correlate with luminal plasticity in prostate development and may have implications for understanding how AR inhibition promotes lineage plasticity in prostate cancer.


Asunto(s)
Organogénesis , Próstata/crecimiento & desarrollo , Receptores Androgénicos/fisiología , Células Madre/fisiología , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Plasticidad de la Célula , Proliferación Celular , Células Epiteliales/citología , Células Epiteliales/fisiología , Regulación de la Expresión Génica , Genotipo , Masculino , Ratones , Ratones Endogámicos C57BL , Próstata/citología , Eliminación de Secuencia , Células Madre/citología
3.
Elife ; 92020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32915138

RESUMEN

Understanding the cellular constituents of the prostate is essential for identifying the cell of origin for prostate adenocarcinoma. Here, we describe a comprehensive single-cell atlas of the adult mouse prostate epithelium, which displays extensive heterogeneity. We observe distal lobe-specific luminal epithelial populations (LumA, LumD, LumL, and LumV), a proximally enriched luminal population (LumP) that is not lobe-specific, and a periurethral population (PrU) that shares both basal and luminal features. Functional analyses suggest that LumP and PrU cells have multipotent progenitor activity in organoid formation and tissue reconstitution assays. Furthermore, we show that mouse distal and proximal luminal cells are most similar to human acinar and ductal populations, that a PrU-like population is conserved between species, and that the mouse lateral prostate is most similar to the human peripheral zone. Our findings elucidate new prostate epithelial progenitors, and help resolve long-standing questions about anatomical relationships between the mouse and human prostate.


Asunto(s)
Células Epiteliales/citología , Próstata/citología , Células Madre/citología , Animales , Células Cultivadas , Células Epiteliales/clasificación , Humanos , Masculino , Ratones , Organoides/citología , Análisis de la Célula Individual , Células Madre/clasificación
4.
Development ; 147(12)2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32467243

RESUMEN

Retinoic acid (RA) signaling is essential for multiple developmental processes, including appropriate pancreas formation from the foregut endoderm. RA is also required to generate pancreatic progenitors from human pluripotent stem cells. However, the role of RA signaling during endocrine specification has not been fully explored. In this study, we demonstrate that the disruption of RA signaling within the NEUROG3-expressing endocrine progenitor population impairs mouse ß cell differentiation and induces ectopic expression of crucial δ cell genes, including somatostatin. In addition, the inhibition of the RA pathway in hESC-derived pancreatic progenitors downstream of NEUROG3 induction impairs insulin expression. We further determine that RA-mediated regulation of endocrine cell differentiation occurs through Wnt pathway components. Together, these data demonstrate the importance of RA signaling in endocrine specification and identify conserved mechanisms by which RA signaling directs pancreatic endocrine cell fate.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Páncreas/metabolismo , Transducción de Señal , Tretinoina/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular , Embrión de Mamíferos/metabolismo , Proteínas de Homeodominio/genética , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/citología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Páncreas/citología , Receptores de Ácido Retinoico/deficiencia , Receptores de Ácido Retinoico/genética , Somatostatina/genética , Somatostatina/metabolismo , Células Secretoras de Somatostatina/citología , Células Secretoras de Somatostatina/metabolismo , Células Madre/citología , Células Madre/metabolismo , Transactivadores/deficiencia , Transactivadores/genética , Proteínas Wnt/metabolismo
5.
Elife ; 72018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29334357

RESUMEN

Master regulatory genes of tissue specification play key roles in stem/progenitor cells and are often important in cancer. In the prostate, androgen receptor (AR) is a master regulator essential for development and tumorigenesis, but its specific functions in prostate stem/progenitor cells have not been elucidated. We have investigated AR function in CARNs (CAstration-Resistant Nkx3.1-expressing cells), a luminal stem/progenitor cell that functions in prostate regeneration. Using genetically--engineered mouse models and novel prostate epithelial cell lines, we find that progenitor properties of CARNs are largely unaffected by AR deletion, apart from decreased proliferation in vivo. Furthermore, AR loss suppresses tumor formation after deletion of the Pten tumor suppressor in CARNs; however, combined Pten deletion and activation of oncogenic Kras in AR-deleted CARNs result in tumors with focal neuroendocrine differentiation. Our findings show that AR modulates specific progenitor properties of CARNs, including their ability to serve as a cell of origin for prostate cancer.


Asunto(s)
Carcinogénesis , Células Epiteliales/fisiología , Próstata/citología , Receptores Androgénicos/metabolismo , Regeneración , Animales , Animales Modificados Genéticamente , Proliferación Celular , Masculino , Ratones , Receptores Androgénicos/deficiencia
6.
Development ; 143(5): 780-6, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26932670

RESUMEN

GATA4 and GATA6 are zinc finger transcription factors that have important functions in several mesodermal and endodermal organs, including heart, liver and pancreas. In humans, heterozygous mutations of either factor are associated with pancreatic agenesis; however, homozygous deletion of both Gata4 and Gata6 is necessary to disrupt pancreas development in mice. In this study, we demonstrate that arrested pancreatic development in Gata4(fl/fl); Gata6(fl/fl); Pdx1:Cre (pDKO) embryos is accompanied by the transition of ventral and dorsal pancreatic fates into intestinal or stomach lineages, respectively. These results indicate that GATA4 and GATA6 play essential roles in maintaining pancreas identity by regulating foregut endodermal fates. Remarkably, pancreatic anlagen derived from pDKO embryos also display a dramatic upregulation of hedgehog pathway components, which are normally absent from the presumptive pancreatic endoderm. Consistent with the erroneous activation of hedgehog signaling, we demonstrate that GATA4 and GATA6 are able to repress transcription through the sonic hedgehog (Shh) endoderm-specific enhancer MACS1 and that GATA-binding sites within this enhancer are necessary for this repressive activity. These studies establish the importance of GATA4/6-mediated inhibition of hedgehog signaling as a major mechanism regulating pancreatic endoderm specification during patterning of the gut tube.


Asunto(s)
Endodermo/fisiología , Factor de Transcripción GATA4/fisiología , Factor de Transcripción GATA6/fisiología , Páncreas/embriología , Animales , Secuencia de Bases , Tipificación del Cuerpo , Linaje de la Célula , Inmunoprecipitación de Cromatina , Coenzima A Ligasas/fisiología , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA6/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Heterocigoto , Ratones , Ratones Noqueados , Proteínas Mitocondriales/fisiología , Mutación , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN , Transducción de Señal
7.
J Clin Invest ; 122(10): 3516-28, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23006325

RESUMEN

Pancreatic agenesis is a human disorder caused by defects in pancreas development. To date, only a few genes have been linked to pancreatic agenesis in humans, with mutations in pancreatic and duodenal homeobox 1 (PDX1) and pancreas-specific transcription factor 1a (PTF1A) reported in only 5 families with described cases. Recently, mutations in GATA6 have been identified in a large percentage of human cases, and a GATA4 mutant allele has been implicated in a single case. In the mouse, Gata4 and Gata6 are expressed in several endoderm-derived tissues, including the pancreas. To analyze the functions of GATA4 and/or GATA6 during mouse pancreatic development, we generated pancreas-specific deletions of Gata4 and Gata6. Surprisingly, loss of either Gata4 or Gata6 in the pancreas resulted in only mild pancreatic defects, which resolved postnatally. However, simultaneous deletion of both Gata4 and Gata6 in the pancreas caused severe pancreatic agenesis due to disruption of pancreatic progenitor cell proliferation, defects in branching morphogenesis, and a subsequent failure to induce the differentiation of progenitor cells expressing carboxypeptidase A1 (CPA1) and neurogenin 3 (NEUROG3). These studies address the conserved and nonconserved mechanisms underlying GATA4 and GATA6 function during pancreas development and provide a new mouse model to characterize the underlying developmental defects associated with pancreatic agenesis.


Asunto(s)
Factor de Transcripción GATA4/fisiología , Factor de Transcripción GATA6/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Organogénesis/genética , Páncreas/embriología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/análisis , Sitios de Unión , Carboxipeptidasas A/análisis , Diferenciación Celular , División Celular , Linaje de la Célula , Modelos Animales de Enfermedad , Endodermo/metabolismo , Células Epiteliales/patología , Factor de Transcripción GATA4/deficiencia , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA6/deficiencia , Factor de Transcripción GATA6/genética , Técnicas de Silenciamiento del Gen , Genotipo , Edad Gestacional , Hiperglucemia/congénito , Hiperglucemia/genética , Insulina/metabolismo , Secreción de Insulina , Ratones , Proteínas del Tejido Nervioso/análisis , Especificidad de Órganos , Páncreas/anomalías , Páncreas/patología , Transcripción Genética
8.
Cell ; 150(6): 1223-34, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22980982

RESUMEN

Diabetes is associated with ß cell failure. But it remains unclear whether the latter results from reduced ß cell number or function. FoxO1 integrates ß cell proliferation with adaptive ß cell function. We interrogated the contribution of these two processes to ß cell dysfunction, using mice lacking FoxO1 in ß cells. FoxO1 ablation caused hyperglycemia with reduced ß cell mass following physiologic stress, such as multiparity and aging. Surprisingly, lineage-tracing experiments demonstrated that loss of ß cell mass was due to ß cell dedifferentiation, not death. Dedifferentiated ß cells reverted to progenitor-like cells expressing Neurogenin3, Oct4, Nanog, and L-Myc. A subset of FoxO1-deficient ß cells adopted the α cell fate, resulting in hyperglucagonemia. Strikingly, we identify the same sequence of events as a feature of different models of murine diabetes. We propose that dedifferentiation trumps endocrine cell death in the natural history of ß cell failure and suggest that treatment of ß cell dysfunction should restore differentiation, rather than promoting ß cell replication.


Asunto(s)
Desdiferenciación Celular , Diabetes Mellitus Tipo 2/patología , Células Secretoras de Insulina/patología , Animales , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatología , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Masculino , Ratones , Páncreas/patología
9.
Diabetes ; 61(9): 2359-68, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22733797

RESUMEN

We recently demonstrated that reducing IGF-1 receptor (IGF-1R) numbers in the endothelium enhances nitric oxide (NO) bioavailability and endothelial cell insulin sensitivity. In the present report, we aimed to examine the effect of increasing IGF-1R on endothelial cell function and repair. To examine the effect of increasing IGF-1R in the endothelium, we generated mice overexpressing human IGF-1R in the endothelium (human IGF-1R endothelium-overexpressing mice [hIGFREO]) under direction of the Tie2 promoter enhancer. hIGFREO aorta had reduced basal NO bioavailability (percent constriction to N(G)-monomethyl-l-arginine [mean (SEM) wild type 106% (30%); hIGFREO 48% (10%)]; P < 0.05). Endothelial cells from hIGFREO had reduced insulin-stimulated endothelial NO synthase activation (mean [SEM] wild type 170% [25%], hIGFREO 58% [3%]; P = 0.04) and insulin-stimulated NO release (mean [SEM] wild type 4,500 AU [1,000], hIGFREO 1,500 AU [700]; P < 0.05). hIGFREO mice had enhanced endothelium regeneration after denuding arterial injury (mean [SEM] percent recovered area, wild type 57% [2%], hIGFREO 47% [5%]; P < 0.05) and enhanced endothelial cell migration in vitro. The IGF-1R, although reducing NO bioavailability, enhances in situ endothelium regeneration. Manipulating IGF-1R in the endothelium may be a useful strategy to treat disorders of vascular growth and repair.


Asunto(s)
Células Endoteliales/metabolismo , Endotelio Vascular/fisiología , Receptor IGF Tipo 1/fisiología , Animales , Aorta/fisiología , Glucemia/metabolismo , Presión Sanguínea , Femenino , Homeostasis , Humanos , Masculino , Ratones , Ratones Transgénicos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/biosíntesis , Receptor IGF Tipo 1/deficiencia , Receptor IGF Tipo 1/genética , Vasoconstricción/efectos de los fármacos
10.
Nat Genet ; 44(4): 406-12, S1, 2012 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-22406641

RESUMEN

Restoration of regulated insulin secretion is the ultimate goal of therapy for type 1 diabetes. Here, we show that, unexpectedly, somatic ablation of Foxo1 in Neurog3(+) enteroendocrine progenitor cells gives rise to gut insulin-positive (Ins(+)) cells that express markers of mature ß cells and secrete bioactive insulin as well as C-peptide in response to glucose and sulfonylureas. Lineage tracing experiments showed that gut Ins(+) cells arise cell autonomously from Foxo1-deficient cells. Inducible Foxo1 ablation in adult mice also resulted in the generation of gut Ins(+) cells. Following ablation by the ß-cell toxin streptozotocin, gut Ins(+) cells regenerate and produce insulin, reversing hyperglycemia in mice. The data indicate that Neurog3(+) enteroendocrine progenitors require active Foxo1 to prevent differentiation into Ins(+) cells. Foxo1 ablation in gut epithelium may provide an approach to restore insulin production in type 1 diabetes.


Asunto(s)
Células Enteroendocrinas/metabolismo , Factores de Transcripción Forkhead/fisiología , Insulina/biosíntesis , Células Neuroendocrinas/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/biosíntesis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Péptido C/biosíntesis , Péptido C/metabolismo , Diferenciación Celular , Diabetes Mellitus Experimental/metabolismo , Células Enteroendocrinas/citología , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/deficiencia , Factores de Transcripción Forkhead/genética , Tracto Gastrointestinal/citología , Tracto Gastrointestinal/metabolismo , Glucosa/farmacología , Hiperglucemia/terapia , Insulina/genética , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/fisiología , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Células Madre/citología , Estreptozocina/farmacología , Compuestos de Sulfonilurea/farmacología , Vía de Señalización Wnt
11.
Diabetes ; 61(4): 915-24, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22357965

RESUMEN

Low concentrations of insulin-like growth factor (IGF) binding protein-1 (IGFBP1) are associated with insulin resistance, diabetes, and cardiovascular disease. We investigated whether increasing IGFBP1 levels can prevent the development of these disorders. Metabolic and vascular phenotype were examined in response to human IGFBP1 overexpression in mice with diet-induced obesity, mice heterozygous for deletion of insulin receptors (IR(+/-)), and ApoE(-/-) mice. Direct effects of human (h)IGFBP1 on nitric oxide (NO) generation and cellular signaling were studied in isolated vessels and in human endothelial cells. IGFBP1 circulating levels were markedly suppressed in dietary-induced obese mice. Overexpression of hIGFBP1 in obese mice reduced blood pressure, improved insulin sensitivity, and increased insulin-stimulated NO generation. In nonobese IR(+/-) mice, overexpression of hIGFBP1 reduced blood pressure and improved insulin-stimulated NO generation. hIGFBP1 induced vasodilatation independently of IGF and increased endothelial NO synthase (eNOS) activity in arterial segments ex vivo, while in endothelial cells, hIGFBP1 increased eNOS Ser(1177) phosphorylation via phosphatidylinositol 3-kinase signaling. Finally, in ApoE(-/-) mice, overexpression of hIGFBP1 reduced atherosclerosis. These favorable effects of hIGFBP1 on insulin sensitivity, blood pressure, NO production, and atherosclerosis suggest that increasing IGFBP1 concentration may be a novel approach to prevent cardiovascular disease in the setting of insulin resistance and diabetes.


Asunto(s)
Aterosclerosis/prevención & control , Presión Sanguínea/fisiología , Diabetes Mellitus/metabolismo , Resistencia a la Insulina/fisiología , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Óxido Nítrico/biosíntesis , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Células Cultivadas , Células Endoteliales , Eliminación de Gen , Humanos , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Ratones , Ratones Transgénicos , Obesidad/metabolismo , Receptor de Insulina/genética
12.
J Neurosci ; 31(49): 18104-18, 2011 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-22159122

RESUMEN

The mammalian auditory sensory epithelium, the organ of Corti, is a highly ordered cellular structure that comprises two types of auditory hair cells and several types of nonsensory supporting cells. During embryogenesis, a stereotyped sequence of cellular and molecular events is required for its development. These processes are assumed to be regulated by multiple growth and transcription factors. However, the majority of these factors have not been identified. One potential regulator of cochlear development is the insulin-like growth factor (IGF) signaling family. To examine the roles of the IGF pathway in inner ear formation, cochleae from Igf1r mutant mice were analyzed. Deletion of Igf1r leads to several changes in inner ear development including a shortened cochlear duct, a decrease in the total number of cochlear hair cells, and defects in the formation of the semicircular canals. In addition, maturation of the cochlear sensory epithelium was delayed at the transition point between cellular proliferation and differentiation. To determine the molecular basis for these defects, inhibition of IGF signaling was replicated pharmacologically in vitro. Results indicated that IGF signaling regulates cochlear length and hair cell number as well as Atoh1 expression through the phosphatidylinositol 3-kinase/Akt signaling pathway. These results demonstrate novel roles for IGF signaling in inner ear development including regulation of vestibular formation, length of the cochlear duct, and the number of cochlear hair cells. The results also provide new insights regarding the pathological processes that underlie auditory defects in the absence of IGF signaling in both humans and mice.


Asunto(s)
Diferenciación Celular/fisiología , Cóclea/citología , Regulación del Desarrollo de la Expresión Génica/genética , Células Receptoras Sensoriales/fisiología , Transducción de Señal/fisiología , Somatomedinas/metabolismo , Factores de Edad , Análisis de Varianza , Animales , Animales Recién Nacidos , Diferenciación Celular/genética , Cóclea/efectos de los fármacos , Cóclea/embriología , Cóclea/crecimiento & desarrollo , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Células Epiteliales/metabolismo , Histonas/metabolismo , Ratones , Ratones Transgénicos , Microscopía Electrónica de Rastreo , Miosinas/metabolismo , Técnicas de Cultivo de Órganos , Receptor IGF Tipo 1/genética , Factores de Transcripción SOXB1/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/ultraestructura , Transducción de Señal/genética , Somatomedinas/genética , Factores de Tiempo
13.
Diabetes ; 60(8): 2169-78, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21677284

RESUMEN

OBJECTIVE: In mice, haploinsufficiency of the IGF-1 receptor (IGF-1R(+/-)), at a whole-body level, increases resistance to inflammation and oxidative stress, but the underlying mechanisms are unclear. We hypothesized that by forming insulin-resistant heterodimers composed of one IGF-1Rαß and one insulin receptor (IR), IRαß complex in endothelial cells (ECs), IGF-1R reduces free IR, which reduces EC insulin sensitivity and generation of the antioxidant/anti-inflammatory signaling radical nitric oxide (NO). RESEARCH DESIGN AND METHODS: Using a number of complementary gene-modified mice with reduced IGF-1R at a whole-body level and specifically in EC, and complementary studies in EC in vitro, we examined the effect of changing IGF-1R/IR stoichiometry on EC insulin sensitivity and NO bioavailability. RESULTS: IGF-1R(+/-) mice had enhanced insulin-mediated glucose lowering. Aortas from these mice were hypocontractile to phenylephrine (PE) and had increased basal NO generation and augmented insulin-mediated NO release from EC. To dissect EC from whole-body effects we generated mice with EC-specific knockdown of IGF-1R. Aortas from these mice were also hypocontractile to PE and had increased basal NO generation. Whole-body and EC deletion of IGF-1R reduced hybrid receptor formation. By reducing IGF-1R in IR-haploinsufficient mice we reduced hybrid formation, restored insulin-mediated vasorelaxation in aorta, and insulin stimulated NO release in EC. Complementary studies in human umbilical vein EC in which IGF-1R was reduced using siRNA confirmed that reducing IGF-1R has favorable effects on NO bioavailability and EC insulin sensitivity. CONCLUSIONS: These data demonstrate that IGF-1R is a critical negative regulator of insulin sensitivity and NO bioavailability in the endothelium.


Asunto(s)
Células Endoteliales/metabolismo , Óxido Nítrico/metabolismo , Receptor IGF Tipo 1/fisiología , Receptor de Insulina/fisiología , Animales , Aorta/efectos de los fármacos , Disponibilidad Biológica , Regulación hacia Abajo , Glucosa/metabolismo , Intolerancia a la Glucosa/genética , Humanos , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fenilefrina/farmacología , Receptor IGF Tipo 1/deficiencia , Receptor IGF Tipo 1/genética , Receptor de Insulina/genética , Transducción de Señal , Venas Umbilicales/citología , Vasoconstricción/efectos de los fármacos
14.
J Biol Chem ; 285(52): 41044-50, 2010 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-20947509

RESUMEN

Signaling by receptor tyrosine kinases regulates pancreatic ß cell function. Inactivation of insulin receptor (InsR), IGF1 receptor (Igf1r), or Irs1 in ß cells impairs insulin secretion. Conversely, Irs2 ablation impairs ß cell replication. In this study, we examined aspects of the Igf1r regulatory signaling cascade in ß cells. To examine genetically the involvement of Irs1 and Irs2 in Igf1r signaling, we generated double mutant mice lacking Igf1r specifically in pancreatic ß cells in an Irs1- or Irs2-null background. We show that Igf1r/Irs1 double mutants do not differ phenotypically from Irs1 single mutants and exhibit hyperinsulinemia, while maintaining normal ß cell mass and glucose tolerance. In contrast, lack of Igf1r function in ß cells aggravates the consequences of Irs2 ablation in double mutants and results in lethal diabetes by 6 weeks of age. This additivity of phenotypic manifestations indicates that Irs2 serves a pathway that is largely independent of Igf1r signaling. Consistent with the view that the latter is the InsR pathway, we show that combined ß cell-specific knock-out of both Insr and Igf1r results in a phenocopy of double mutants lacking Igf1r and Irs2. We conclude that Igf1r signals primarily through Irs1 and affects insulin secretion, whereas ß cell proliferation is mainly regulated by InsR using Irs2 as a downstream signaling effector. The insulin and IGF pathways appear to control ß cell functions independently and selectively.


Asunto(s)
Proteínas Sustrato del Receptor de Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Receptor IGF Tipo 1/metabolismo , Transducción de Señal/fisiología , Animales , Proliferación Celular , Diabetes Mellitus/genética , Diabetes Mellitus/mortalidad , Glucosa/genética , Glucosa/metabolismo , Humanos , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Insulina/genética , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Ratones , Ratones Noqueados , Receptor IGF Tipo 1/genética , Receptor de Insulina/genética , Receptor de Insulina/metabolismo
15.
Proc Natl Acad Sci U S A ; 106(7): 2359-64, 2009 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-19174523

RESUMEN

Considering the strong association between dysregulated insulin-like growth factor (IGF) signaling and various human cancers, we have used an expedient combination of genetic analysis and pharmacological treatment to evaluate the potential of the type 1 IGF receptor (Igf1r) for targeted anticancer therapy in a mouse model of mammary tumorigenesis. In this particular strain of genetically modified animals, histopathologically heterogeneous invasive carcinomas exhibiting up-regulation of the Igf1r gene developed extremely rapidly by mammary gland-specific overexpression of constitutively active oncogenic Kras* (mutant Kras(G12D)). Immunophenotyping data and expression profiling analyses showed that, except for a minor luminal component, these mouse tumors resembled basal-like human breast cancers. This is a group of aggressive tumors of poor prognosis for which there is no targeted therapy currently available, and it includes a subtype correlating with KRAS locus amplification. Conditional ablation of Igf1r in the mouse mammary epithelium increased the latency of Kras*-induced tumors very significantly (approximately 11-fold in comparison with the intact model), whereas treatment of tumor-bearing animals by administration of picropodophyllin (PPP), a specific Igf1r inhibitor, resulted in a dramatic decrease in tumor mass of the main forms of basal-like carcinomas. PPP also was effective against xenografts of the human basal-like cancer cell line MDA-MB-231, which carries a KRAS(G13D) mutation.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/terapia , Regulación Neoplásica de la Expresión Génica , Receptor IGF Tipo 1/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Inmunofenotipificación , Ratones , Ratones Transgénicos , Modelos Biológicos , Podofilotoxina/análogos & derivados , Podofilotoxina/farmacología , Transducción de Señal , Proteínas ras/metabolismo
16.
Neuron ; 57(6): 847-57, 2008 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-18367086

RESUMEN

Olfactory neurons project their axons to spatially invariant glomeruli in the olfactory bulb, forming an ordered pattern of innervation comprising the olfactory sensory map. A mirror symmetry exists within this map, such that neurons expressing a given receptor typically project to one glomerulus on the medial face and one glomerulus on the lateral face of the bulb. The mechanisms underlying an olfactory neuron's choice to project medially versus laterally remain largely unknown, however. Here we demonstrate that insulin-like growth factor (IGF) signaling is required for sensory innervation of the lateral olfactory bulb. Mutations that eliminate IGF signaling cause axons destined for targets in the lateral bulb to shift to ectopic sites on the ventral-medial surface. Using primary cultures of olfactory and cerebellar neurons, we further show that IGF is a chemoattractant for axon growth cones. Together these observations reveal a role of IGF signaling in sensory map formation and axon guidance.


Asunto(s)
Axones/fisiología , Factor II del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Vías Olfatorias/fisiología , Neuronas Receptoras Olfatorias/citología , Transducción de Señal/fisiología , Animales , Axones/efectos de los fármacos , Cerebelo/citología , Factores Quimiotácticos/farmacología , Cromonas/farmacología , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Regulación del Desarrollo de la Expresión Génica/fisiología , Técnicas In Vitro , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/farmacología , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/farmacología , Ratones , Ratones Transgénicos , Morfolinas/farmacología , Mutación/fisiología , Bulbo Olfatorio/citología , Bulbo Olfatorio/embriología , Bulbo Olfatorio/crecimiento & desarrollo , Proteína Marcadora Olfativa/genética , Proteína Marcadora Olfativa/metabolismo , Vías Olfatorias/embriología , Neuronas Receptoras Olfatorias/efectos de los fármacos , Neuronas Receptoras Olfatorias/fisiología
17.
Glia ; 55(4): 400-11, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17186502

RESUMEN

Insulin-like growth factor-I (IGF-I) has been shown to be a potent agent in promoting the growth and differentiation of oligodendrocyte precursors, and in stimulating myelination during development and following injury. To definitively determine whether IGF-I acts directly on the cells of oligodendrocyte lineage, we generated lines of mice in which the type 1 IGF receptor gene (igf1r) was conditionally ablated either in Olig1 or proteolipid protein expressing cells (termed IGF1R(pre-oligo-ko) and IGF1R(oligo-ko) mice, respectively). Compared with wild type mice, IGF1R(pre-oligo-ko) mice had a decreased volume (by 35-55%) and cell number (by 54-70%) in the corpus callosum (CC) and anterior commissure at 2 and 6 weeks of age, respectively. IGF1R(oligo-ko) mice by 25 weeks of age also showed reductions, albeit less marked, in CC volume and cell number. Unlike astrocytes, the percentage of NG2(+) oligodendrocyte precursors was decreased by approximately 13% in 2-week-old IGF1R(pre-oligo-ko) mice, while the percentage of CC1(+) mature oligodendrocytes was decreased by approximately 24% in 6-week-old IGF1R(pre-oligo-ko) mice and approximately 25% in 25-week-old IGF1R(oligo-ko) mice. The reduction in these cells is apparently a result of decreased proliferation and increased apoptosis. These results indicate that IGF-I directly affects oligodendrocytes and myelination in vivo via IGF1R, and that IGF1R signaling in the cells of oligodendrocyte lineage is required for normal oligodendrocyte development and myelination. These data also provide a fundamental basis for developing strategies with the potential to target IGF-IGF1R signaling pathways in oligodendrocyte lineage cells for the treatment of demyelinating disorders.


Asunto(s)
Linaje de la Célula/fisiología , Vaina de Mielina/fisiología , Oligodendroglía/fisiología , Receptor IGF Tipo 1/fisiología , Transducción de Señal/fisiología , Animales , Southern Blotting , Western Blotting , Cuerpo Calloso/citología , Cuerpo Calloso/metabolismo , Giro Dentado/citología , Giro Dentado/metabolismo , Exones/genética , Inmunohistoquímica , Etiquetado Corte-Fin in Situ , Operón Lac/genética , Ratones , Ratones Noqueados
18.
Dev Biol ; 298(1): 327-33, 2006 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16905129

RESUMEN

The insulin-like growth factors (IGFs) play a major role in regulating the systemic growth of mammals. However, it is unclear to what extent their systemic and/or local functions act in concert with other local growth factors controlling the sizes of individual organs. We have specifically addressed whether growth control of the skeleton by IGFs interacts genetically with that by Indian hedgehog (Ihh), a locally produced growth signal for the endochondral skeleton. Here, we report that disruption of both IGF and Ihh signaling resulted in additive reduction in the size of the embryonic skeleton. Thus, IGF and Ihh signaling appear to control the growth of the skeleton in parallel pathways.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/fisiología , Osteogénesis , Transducción de Señal , Esqueleto , Somatomedinas/fisiología , Animales , Cartílago/metabolismo , Proliferación Celular , Condrocitos/fisiología , Placa de Crecimiento/ultraestructura , Proteínas Hedgehog , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Noqueados , Somatomedinas/genética
19.
J Neurosci ; 23(20): 7710-8, 2003 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-12930811

RESUMEN

We examined the role of IGF signaling in the remyelination process by disrupting the gene encoding the type 1 IGF receptor (IGF1R) specifically in the mouse brain by Cre-mediated recombination and then exposing these mutants and normal siblings to cuprizone. This neurotoxicant induces a demyelinating lesion in the corpus callosum that is reversible on termination of the insult. Acute demyelination and oligodendrocyte depletion were the same in mutants and controls, but the mutants did not remyelinate adequately. We observed that oligodendrocyte progenitors did not accumulate, proliferate, or survive within the mutant mice, compared with wild type, indicating that signaling through the IGF1R plays a critical role in remyelination via effects on oligodendrocyte progenitors.


Asunto(s)
Vaina de Mielina/fisiología , Oligodendroglía/fisiología , Receptor IGF Tipo 1/metabolismo , Transducción de Señal , Animales , Células Cultivadas , Sistema Nervioso Central/fisiología , Cuerpo Calloso/citología , Cuerpo Calloso/efectos de los fármacos , Cuerpo Calloso/fisiología , Cuprizona/toxicidad , Macrófagos/citología , Ratones , Ratones Transgénicos , Microglía/citología , Mutación , Oligodendroglía/citología , Oligodendroglía/metabolismo , Receptor IGF Tipo 1/genética , Somatomedinas/fisiología , Células Madre/citología , Células Madre/metabolismo , Células Madre/fisiología , Factor de Necrosis Tumoral alfa/análisis
20.
J Clin Invest ; 110(7): 1011-9, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12370279

RESUMEN

Defective insulin secretion is a feature of type 2 diabetes that results from inadequate compensatory increase of beta cell mass and impaired glucose-dependent insulin release. beta cell proliferation and secretion are thought to be regulated by signaling through receptor tyrosine kinases. In this regard, we sought to examine the potential proliferative and/or antiapoptotic role of IGFs in beta cells by tissue-specific conditional mutagenesis ablating type 1 IGF receptor (IGF1R) signaling. Unexpectedly, lack of functional IGF1R did not affect beta cell mass, but resulted in age-dependent impairment of glucose tolerance, associated with a decrease of glucose- and arginine-dependent insulin release. These observations reveal a requirement of IGF1R-mediated signaling for insulin secretion.


Asunto(s)
Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Receptor IGF Tipo 1/fisiología , Animales , Exocitosis , Transportador de Glucosa de Tipo 2 , Secreción de Insulina , Ratones , Proteínas de Transporte de Monosacáridos/análisis , Fenotipo , ARN Mensajero/análisis , Receptor IGF Tipo 1/deficiencia , Receptor IGF Tipo 1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA