Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Front Immunol ; 15: 1406409, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994358

RESUMEN

Objective: There have been reports of neuromyelitis optica spectrum disorder (NMOSD) coexisting with connective tissue disorders. The objective of this study was to describe the characteristics of NMOSD coexisting with autoimmune diseases (AID). Methods: This retrospective study evaluated NMOSD patients with and without AID. The enrolled patients had at least one attack, with duration of more than 1 year. Data on the demographics, clinical features, and laboratory findings were assessed. The Poisson model was used to investigate the risk factors associated with the annualized relapse rate (ARR), whereas the Cox model was used to evaluate the risk factors for the first relapse. Results: A total of 180 patients (154 women and 26 men) with NMOSD were identified: 45 had AID and 135 did not. Female patients had a higher prevalence of concomitant AID (p = 0.006) and a greater relapse rate within the first year. There were no statistically significant differences in the characteristics of patients. Kaplan-Meier analysis revealed that NMOSD patients with seropositive aquaporin 4 antibodies (AQP4-Ab; log-rank: p = 0.044), had a shorter time to relapse. Patients seropositive for AQP4-Ab (HR = 2.402, 95%CI = 1.092-5.283, p = 0.029) had a higher risk of suffering a first relapse, according to the Cox model. Patients with and without AID showed a similar declining tendency in terms of change in ARR throughout the first 5 years of the disease. The ARR was greater in the first year [incidence rate ratio (IRR) = 1.534, 95%CI = 1.111-2.118] and the first 2 years (IRR = 1.474, 95%CI = 1.056-2.058) in patients with coexisting AID diagnosis prior to the NMOSD onset. Conclusions: Patients with NMOSD with coexisting AID had similar characteristics when compared with those without AID. NMOSD patients with AID diagnosed before onset had a higher risk of relapse in the early stage of the disease.


Asunto(s)
Acuaporina 4 , Enfermedades Autoinmunes , Neuromielitis Óptica , Recurrencia , Humanos , Neuromielitis Óptica/epidemiología , Neuromielitis Óptica/inmunología , Neuromielitis Óptica/diagnóstico , Femenino , Masculino , Adulto , Estudios Retrospectivos , Persona de Mediana Edad , Enfermedades Autoinmunes/epidemiología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/complicaciones , Acuaporina 4/inmunología , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Factores de Riesgo , Anciano , Adulto Joven
2.
Sci Total Environ ; 941: 173553, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823691

RESUMEN

Red mud and phosphogypsum have long been a focus and challenge in global industrial waste management, and their low-cost and large-scale utilization technology has always been an urgent need. This study is based on the strong acid-base neutralization reaction between red mud and phosphogypsum, which contain an elemental composition similar to that of natural soil, red mud itself has characteristic of clay minerals, and other auxiliary materials (i.e. rice husk powder, bentonite, fly ash, polyacrylamide flocculant and microbial suspension) were added, so as to explore the potential of synergistically prepared artificial soil for vegetation restoration. The results showed that the artificial soils exhibited physicochemical characteristics (e.g., pH, moisture content, cation exchange capacity) similar to those of natural soil, along with abundant organic matter, nitrogen, phosphorus, and potassium contents, meeting the growth requirements of plants. The artificial soils were able to support favorable growth of suitable plants (e.g., sunflower, wheat, rye grass), accumulating high levels of diverse enzymatic activities, comparable to those in natural soils (e.g., catalase, urease, phosphatase), or even surpassing natural soils (e.g., sucrase), and rich microorganism communities, such as Cyanobacteria, Proteobacteria, Actinobacteria in the bacteria domain, and Ascomycota in the fungi domain, were initially developed. It's suggested that preparing 1 ton of artificial soil entails synergistic consumption of 613.7 kg of red mud and 244.6 kg of phosphogypsum, accounting for mass proportions of 61.4 % and 24.5 %, respectively. In future, more evaluations on the leaching loss of nutrients and alkalinity and the environmental risks of heavy metals should be conducted to more references for the artificial soil application. In summary, the preparation of artificial soil is a very simple, efficient, scalable and low-cost collaborative resource utilization scheme of red mud and phosphogypsum, which has great potential for vegetation restoration in some places such as tailings field and soil-deficient depression.


Asunto(s)
Sulfato de Calcio , Restauración y Remediación Ambiental , Fósforo , Suelo , Fósforo/análisis , Suelo/química , Restauración y Remediación Ambiental/métodos , Microbiología del Suelo , Plantas , Administración de Residuos/métodos
3.
iScience ; 27(4): 109533, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38591006

RESUMEN

Hepatitis B virus (HBV) infection generally elicits weak type-I interferon (IFN) immune response in hepatocytes, covering the regulatory effect of IFN-stimulated genes. In this study, low level of IFN-stimulated gene 12a (ISG12a) predicted malignant transformation and poor prognosis of HBV-associated hepatocellular carcinoma (HCC), whereas high level of ISG12a indicated active NK cell phenotypes. ISG12a interacts with TRIM21 to inhibit the phosphorylation activation of protein kinase B (PKB, also known as AKT) and ß-catenin, suppressing PD-L1 expression to block PD-1/PD-L1 signaling, thereby enhancing the anticancer effect of NK cells. The suppression of PD-1-deficient NK-92 cells on HBV-associated tumors was independent of ISG12a expression, whereas the anticancer effect of PD-1-expressed NK-92 cells on HBV-associated tumors was enhanced by ISG12a and treatments of atezolizumab and nivolumab. Thus, tumor intrinsic ISG12a promotes the anticancer effect of NK cells by regulating PD-1/PD-L1 signaling, presenting the significant role of innate immunity in defending against HBV-associated HCC.

4.
Antiviral Res ; 222: 105797, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38185222

RESUMEN

RNA viral infections seriously endanger human health. Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 2 (SHP2) suppresses innate immunity against influenza A virus, and pharmacological inhibition of SHP2 provokes hepatic innate immunity. SHP2 binds and catalyzes tyrosyl dephosphorylation of protein zero-related (PZR), but the regulatory effect of PZR on innate immune response to viral infection is unclear. In this study, the transcription and protein level of PZR in host cells were found to be decreased with RNA viral infection, and high level of PZR was uncovered to inhibit interferon (IFN) signaling mediated by RIG-I and MDA5. Through localizing in mitochondria, PZR targeted and interacted with MAVS (also known as IPS-1/VISA/Cardif), suppressing the aggregation and activation of MAVS. Specifically, Y263 residue in ITIM is critical for PZR to exert immunosuppression under RNA viral infection. Moreover, the recruited SHP2 by PZR that modified with tyrosine phosphorylation under RNA viral infection might inhibit phosphorylation activation of MAVS. In conclusion, PZR and SHP2 suppress innate immune response to RNA viral infection through inhibiting MAVS activation. This study reveals the regulatory mechanism of PZR-SHP2-MAVS signal axis on IFN signaling mediated by RIG-I and MDA5, which may provide new sight for developing antiviral drugs.


Asunto(s)
Infecciones por Virus ARN , Virus ARN , Virosis , Humanos , Transducción de Señal , Proteína 58 DEAD Box , Inmunidad Innata , Interferones , ARN
5.
Microbiol Spectr ; 12(1): e0274523, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38018998

RESUMEN

IMPORTANCE: Approximately 257 million people worldwide have been infected with hepatitis B virus (HBV), and HBV infection can cause chronic hepatitis, cirrhosis, and even liver cancer. The lack of suitable and effective infection models has greatly limited research in HBV-related fields for a long time, and it is still not possible to discover a method to completely and effectively remove the HBV genome. We have constructed a hepatocellular carcinoma cell line, HLCZ01, that can support the complete life cycle of HBV. This model can mimic the long-term stable infection of HBV in the natural state and can replace primary human hepatocytes for the development of human liver chimeric mice. This model will be a powerful tool for research in the field of HBV.


Asunto(s)
Hepatitis B Crónica , Hepatitis B , Humanos , Ratones , Animales , Replicación Viral , Virus de la Hepatitis B/genética , Modelos Animales de Enfermedad , Técnicas de Cultivo de Célula
6.
Behav Brain Res ; 459: 114782, 2024 02 29.
Artículo en Inglés | MEDLINE | ID: mdl-38029844

RESUMEN

Esketamine is verified as a potential therapeutic drug for the treatment of depression, but it is still unclear the detailed underlying mechanisms by which Esketamine ameliorates depression-related symptoms, which seriously limits the utilization of this drug in clinical practices. In this study, the C57BL6/J mice and mouse primary microglial cells were subjected to lipopolysaccharide (LPS)-induced depressive models in vivo and in vitro, and our results confirmed that LPS-induced neuroinflammation, pyroptotic and apoptotic death contributed to the development of LPS-induced depressive symptoms. Then, the following experiments verified that low-dose Esketamine treatment decreased the expression levels of IL-6, TNF-α and IL-18 to restrain cellular inflammation, downregulated NLRP3, cleaved Caspase-1, IL-1ß and GSDMD-N to hamper pyroptotic cell death, and inhibited cleaved caspase-3 and Bax, but upregulated Bcl-2 to restrict apoptotic cell death in the LPS-treated mice hippocampus tissues and mouse microglial cells, leading to the suppression of depression development. However, high-dose Esketamine did not have those effects. Next, by conducting mechanical experiments, we verified that low-dose Esketamine downregulated GSK-3ß to inactivate NLRP3 inflammasome, and the effects of low-dose Esketamine on cell pyroptosis, neuroinflammation and apoptosis in the LPS-treated microglial cells were all abrogated by overexpressing GSK-3ß and NLRP3. Taken together, low-dose Esketamine ameliorated LPS-induced depressive symptoms in mice through regulating the GSK-3ß/NLRP3 pathway, and our work suggested that appropriate doses of Esketamine were essential for the treatment of depression in clinic.


Asunto(s)
Lipopolisacáridos , Proteína con Dominio Pirina 3 de la Familia NLR , Ratones , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Piroptosis , Microglía , Depresión/inducido químicamente , Depresión/tratamiento farmacológico , Enfermedades Neuroinflamatorias , Inflamasomas/metabolismo
7.
J Virol ; 97(12): e0151323, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38032198

RESUMEN

IMPORTANCE: The precise regulation of the innate immune response is essential for the maintenance of homeostasis. MAVS and STING play key roles in immune signaling pathways activated by RNA and DNA viruses, respectively. Here, we showed that DHCR24 impaired the antiviral response by targeting MAVS and STING. Notably, DHCR24 interacts with MAVS and STING and inhibits TRIM21-triggered K27-linked ubiquitination of MAVS and AMFR-triggered K27-linked ubiquitination of STING, restraining the activation of MAVS and STING, respectively. Together, this study elucidates how one cholesterol key enzyme orchestrates two antiviral signal transduction pathways.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Inmunidad Innata , Proteínas de la Membrana , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Hidroxiesteroides , Proteínas de la Membrana/metabolismo , Oxidorreductasas , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Ubiquitinación , Línea Celular
8.
Microbiol Spectr ; : e0164123, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37623314

RESUMEN

KDM7A (lysine demethylase 7A, also known as JHDM1D) is a histone demethylase, it is mainly involved in the intracellular post-translational modifications process. Recently, it has been proved that the histone demethylase members can regulate the replication of hepatitis B virus (HBV) and the expression of key molecules in the Janus-activated kinase-signal transducer and activator of the transcription (JAK/STAT) signaling pathway by chromatin modifying mechanisms. In our study, we identify novel roles of KDM7A in HBV replication and immune microenvironment through two subjects: pathogen and host. On the one hand, KDM7A is highly expressed in HBV-infected cells and promotes HBV replication in vitro and in vivo. Moreover, KDM7A interacts with HBV covalently closed circular DNA and augments the activity of the HBV core promoter. On the other hand, KDM7A can remodel the immune microenvironment. It inhibits the expression of interferon-stimulated genes (ISGs) through the IFN-γ/JAK2/STAT1 signaling pathway in both hepatocytes and macrophages. Further study shows that KDM7A interacts with JAK2 and STAT1 and affects their methylation. In general, we demonstrate the dual functions of KDM7A in HBV replication and immune microenvironment, and then we propose a new therapeutic target for HBV infection and immunotherapy. IMPORTANCE Histone lysine demethylase KDM7A can interact with covalently closed circular DNA and promote the replication of hepatitis B virus (HBV). The IFN-γ/JAK2/STAT1 signaling pathway in macrophages and hepatocytes is also downregulated by KDM7A. This study provides new insights into the mechanism of HBV infection and the remodeling of the immune microenvironment.

9.
PLoS Pathog ; 19(6): e1011443, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37327222

RESUMEN

The host always employs various ways to defend against viral infection and spread. However, viruses have evolved their own effective strategies, such as inhibition of RNA translation of the antiviral effectors, to destroy the host's defense barriers. Protein synthesis, commonly controlled by the α-subunit of eukaryotic translation initiation factor 2 (eIF2α), is a basic cellular biological process among all species. In response to viral infection, in addition to inducing the transcription of antiviral cytokines by innate immunity, infected cells also inhibit the RNA translation of antiviral factors by activating the protein kinase R (PKR)-eIF2α signaling pathway. Regulation of innate immunity has been well studied; however, regulation of the PKR-eIF2α signaling pathway remains unclear. In this study, we found that the E3 ligase TRIM21 negatively regulates the PKR-eIF2α signaling pathway. Mechanistically, TRIM21 interacts with the PKR phosphatase PP1α and promotes K6-linked polyubiquitination of PP1α. Ubiquitinated PP1α augments its interaction with PKR, causing PKR dephosphorylation and subsequent translational inhibition release. Furthermore, TRIM21 can constitutively restrict viral infection by reversing PKR-dependent translational inhibition of various previously known and unknown antiviral factors. Our study highlights a previously undiscovered role of TRIM21 in regulating translation, which will provide new insights into the host antiviral response and novel targets for the treatment of translation-associated diseases in the clinic.


Asunto(s)
ARN , Virosis , Humanos , ARN/metabolismo , eIF-2 Quinasa/metabolismo , Procesamiento Proteico-Postraduccional , Fosforilación , Antivirales , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Replicación Viral
10.
Nat Commun ; 13(1): 7001, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36385095

RESUMEN

An acute inflammatory response needs to be properly regulated to promote the elimination of pathogens and prevent the risk of tumorigenesis, but the relevant regulatory mechanism has not been fully elucidated. Here, we report that Ras guanine nucleotide-releasing protein 1 (RasGRP1) is a bifunctional regulator that promotes acute inflammation and inhibits inflammation-associated cancer. At the mRNA level, Rasgrp1 activates the inflammatory response by functioning as a competing endogenous RNA to specifically promote IL-6 expression by sponging let-7a. In vivo overexpression of the Rasgrp1 3' untranslated region enhances lipopolysaccharide-induced systemic inflammation and dextran sulphate sodium-induced colitis in Il6+/+ mice but not in Il6-/- mice. At the protein level, RasGRP1 overexpression significantly inhibits the tumour-promoting effect of IL-6 in hepatocellular carcinoma progenitor cell-like spheroids. Examination of the EGFR signalling pathway shows that RasGRP1 inhibits inflammation-associated cancer cell growth by disrupting the EGFR-SOS1-Ras-AKT signalling pathway. Tumour patients with high RasGRP1 expression have better clinical outcomes than those with low RasGRP1 expression. Considering that acute inflammation rarely leads to tumorigenesis, this study suggests that RasGRP1 may be an important bifunctional regulator of the acute inflammatory response and tumour growth.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido , Interleucina-6 , Ratones , Animales , Interleucina-6/genética , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Transformación Celular Neoplásica/genética , Inflamación/genética , Sinapsinas , Receptores ErbB
11.
J Immunol ; 209(10): 1987-1998, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36426955

RESUMEN

Pyroptosis is a form of regulated cell death mediated by the gasdermin protein family. During virus infection, cell pyroptosis restricts viral replication. The mechanisms of the tripartite motif (TRIM) protein family and IFN-stimulated genes (ISGs) against viruses have been studied. The role of TRIMs and ISGs in pyroptosis remains unclear. In this study, we show that TRIM21 interacts with ISG12a in viral infection and facilitates its translocation into the mitochondria by promoting its ubiquitination, thereby causing caspase 3 activation. Gasdermin E (GSDME) is specifically cleaved by caspase 3 upon viral infection, releasing the GSDME N-terminal domain, perforating the cell membrane, and causing cell pyroptosis. Our study uncovers a new mechanism of TRIM21 and ISG12a in regulating virus-induced cell pyroptosis.


Asunto(s)
Piroptosis , Virus , Piroptosis/fisiología , Caspasa 3/metabolismo , Ubiquitinación , Muerte Celular , Proteínas de Motivos Tripartitos/metabolismo
12.
Cell Rep ; 40(7): 111215, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35977519

RESUMEN

Interferons (IFNs) are essential in antiviral defense, antitumor effects, and immunoregulatory activities. Although methionine oxidation is associated with various physiological and pathophysiological processes in plants, animals, and humans, its role in immunity remains unclear. We find that the redox cycling of signal transducer and activator of transcription 2 (STAT2) is an intrinsic cellular biological process, and that impairment of the redox status contributes to STAT2 methionine oxidation, inhibiting its activation. IFN protects STAT2 from methionine oxidation through the recruitment of methionine sulfoxide reductase MSRB2, whose enzymatic activity is enhanced by N-acetyltransferase 9 (NAT9), a chaperone of STAT2 defined in this study, upon IFN treatment. Consequently, loss of Nat9 renders mice more susceptible to viral infection. Our study highlights the key function of methionine oxidation in immunity, which provides evidence for the decline of immune function by aging and may provide insights into the clinical applications of IFN in immune-related diseases.


Asunto(s)
Inmunidad Innata , Factor de Transcripción STAT2/metabolismo , Transducción de Señal , Animales , Homeostasis , Humanos , Metionina , Ratones , Oxidación-Reducción , Factor de Transcripción STAT1/metabolismo
13.
Apoptosis ; 27(7-8): 590-605, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35717659

RESUMEN

This study aimed to investigate the role and regulatory mechanism of RNF126 in nasopharyngeal carcinoma. Firstly, the expression and prognosis of RNF126 were analyzed by TCGA database. The expression of RNF126 was further verified by NPC tissue samples and cells. An ectopic xenograft model was constructed to verify the regulatory role of RNF126 in NPC tumor progression. The regulatory effect of RNF126 on macrophage polarization and migration was verified by co-culture of tumor cells and THP-1 cells. The role of RNF126 in tumor exosomes involved in intercellular communication was further verified by nanoparticle tracking technology, western blotting and immunofluorescence assays. QRT-PCR, half-life assay and WB assay were used to verify the regulatory effect of RNF126 on PTEN ubiquitination and PI3K/AKT pathway. Finally, an in vivo assay was used to verify the regulation of exosomes on tumor growth and metastasis. In summary, we found for the first time that tumor-derived exosomal PTEN degrades PTEN through ubiquitination to regulate the tumor immune microenvironment and promote NPC growth and metastasis. These results provide the basis for the screening of early markers of NPC and targeted therapy.


Asunto(s)
Exosomas , MicroARNs , Neoplasias Nasofaríngeas , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Exosomas/genética , Exosomas/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patología , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Microambiente Tumoral/genética , Ubiquitina-Proteína Ligasas , Ubiquitinación
14.
Front Neurol ; 13: 891064, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35599732

RESUMEN

Background: Several studies have reported the efficacy and safety of rituximab (RTX) and mycophenolate mofetil (MMF) in neuromyelitis optica spectrum disorder (NMOSD). This study aimed to evaluate the efficacy and safety of long-term use of low-dose RTX and MMF in Chinese patients with NMOSD. Methods: We retrospectively reviewed data from patients with NMOSD in our hospital. The enrolled patients were administrated different immunosuppressive agents. We accessed annual relapse rate (ARR), neurological disability (Expanded Disability Status Scale, EDSS), time to the next relapse, and adverse events. Results: EDSS and ARR were both reduced after RTX and MMF treatment. Kaplan-Meier analysis indicated that patients treated with RTX had a longer time to next relapse compared other immunosuppressive agents before RTX (log-rank test: p < 0.001). Furthermore, we evaluated the change of EDSS and ARR in RTX and MMF, and patients treated with RTX showed a better reduction. Eleven relapses from seven patients in group RTX and 20 relapses from 14 patients in group MMF were reported during follow-up. Conclusion: Long-term using of low dose of RTX and MMF were effective and tolerable in Chinese patients with NMOSD. Compared with MMF, RTX showed a better way to reduce the ARR.

15.
J Virol ; 96(7): e0000122, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35254105

RESUMEN

The induction of interferons (IFNs) plays an important role in the elimination of invading pathogens. Heat shock binding protein 21 (HBP21), first known as a molecular chaperone of HSP70, is involved in tumor development. Heat shock binding proteins have been shown to regulate diverse biological processes, such as cell cycle, kinetochore localization, transcription, and cilium formation. Their role in antimicrobial immunity remains unknown. Here, we found that HBP21 drives a positive feedback loop to promote IRF3-mediated IFN production triggered by viral infection. HBP21 deficiency significantly impaired the virus-induced production of IFN and resulted in greater susceptibility to viral infection both in vitro and in vivo. Mechanistically, HBP21 interacted with IRF3 and promoted the formation of a TBK1-IRF3 complex. Moreover, HBP21 abolished the interaction between PP2A and IRF3 to repress the dephosphorylation of IRF3. Analysis of HBP21 protein structure further confirmed that HBP21 promotes the activation of IRF3 by depressing the dephosphorylation of IRF3 by PP2A. Further study demonstrated that virus-induced phosphorylation of Ser85 and Ser153 of HBP21 itself is important for the phosphorylation and dimerization of IRF3. Our study identifies HBP21 as a new positive regulator of innate antiviral response, which adds novel insight into activation of IRF3 controlled by multiple networks that specify behavior of tumors and immunity. IMPORTANCE The innate immune system is the first-line host defense against microbial pathogen invasion. The physiological functions of molecular chaperones, involving cell differentiation, migration, proliferation and inflammation, have been intensively studied. HBP21 as a molecular chaperone is critical for tumor development. Tumor is related to immunity. Whether HBP21 regulates immunity remains unknown. Here, we found that HBP21 promotes innate immunity response by dual regulation of IRF3. HBP21 interacts with IRF3 and promotes the formation of a TBK1-IRF3 complex. Moreover, HBP21 disturbs the interaction between PP2A and IRF3 to depress the dephosphorylation of IRF3. Analysis of HBP21 protein structure confirms that HBP21 promotes the activation of IRF3 by blocking the dephosphorylation of IRF3 by PP2A. Interestingly, virus-induced Ser85 and Ser153 phosphorylation of HBP21 is important for IRF3 activation. Our findings add to the known novel immunological functions of molecular chaperones and provide new insights into the regulation of innate immunity.


Asunto(s)
Inmunidad Innata , Chaperonas Moleculares , Virosis , Humanos , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Factor 3 Regulador del Interferón/metabolismo , Chaperonas Moleculares/metabolismo , Fosforilación , Virosis/inmunología
16.
J Virol ; 96(6): e0217521, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35107381

RESUMEN

REC8 meiotic recombination protein (REC8) is a member of structural maintenance of chromosome (SMC) protein partners, which play an important role in meiosis, antitumor activity, and sperm formation. As the adaptor proteins of RIG-I-like receptor (RLR) signaling and cyclic GMP-AMP synthase (cGAS)-DNA signaling, the activity and stability of MAVS (mitochondrial antiviral signaling protein; also known as VISA, Cardif, and IPS-1) and STING (stimulator of interferon genes; also known as MITA) are critical for innate immunity. Here, we report that REC8 interacts with MAVS and STING and inhibits their ubiquitination and subsequent degradation, thereby promoting innate antiviral signaling. REC8 is upregulated through the JAK-STAT signaling pathway during viral infection. Knockdown of REC8 impairs the innate immune responses against vesicular stomatitis virus (VSV), Newcastle disease virus (NDV), and herpes simplex virus (HSV). Mechanistically, during infection with viruses, the SUMOylated REC8 is transferred from the nucleus to the cytoplasm and then interacts with MAVS and STING to inhibit their K48-linked ubiquitination triggered by RNF5. Moreover, REC8 promotes the recruitment of TBK1 to MAVS and STING. Thus, REC8 functions as a positive modulator of innate immunity. Our work highlights a previously undocumented role of meiosis-associated protein REC8 in regulating innate immunity. IMPORTANCE The innate immune response is crucial for the host to resist the invasion of viruses and other pathogens. STING and MAVS play a critical role in the innate immune response to DNA and RNA viral infection, respectively. In this study, REC8 promoted the innate immune response by targeting STING and MAVS. Notably, REC8 interacts with MAVS and STING in the cytoplasm and inhibits K48-linked ubiquitination of MAVS and STING triggered by RNF5, stabilizing MAVS and STING protein to promote innate immunity and gradually inhibiting viral infection. Our study provides a new insight for the study of antiviral innate immunity.


Asunto(s)
Proteínas de Ciclo Celular , Inmunidad Innata , Virosis , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Antivirales , Proteínas de Ciclo Celular/inmunología , Proteínas de la Membrana/metabolismo , Virus de la Enfermedad de Newcastle , Simplexvirus , Ubiquitinación , Virus de la Estomatitis Vesicular Indiana , Virosis/inmunología
17.
J Am Chem Soc ; 143(46): 19317-19329, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34762804

RESUMEN

GFP-like fluorescent proteins and their molecular mimics have revolutionized bioimaging research, but their emissions are largely limited in the visible to far-red region, hampering the in vivo applications in intact animals. Herein, we structurally modulate GFP-like chromophores using a donor-acceptor-acceptor (D-A-A') molecular configuration to discover a set of novel fluorogenic derivatives with infrared-shifted spectra. These chromophores can be fluorescently elicited by their specific interaction with G-quadruplex (G4), a unique noncanonical nucleic acid secondary structure, via inhibition of the chromophores' twisted-intramolecular charge transfer. This feature allows us to create, for the first time, FP mimics with tunable emission in the near-infrared (NIR) region (Emmax = 664-705 nm), namely, infrared G-quadruplex mimics of FPs (igMFP). Compared with their FP counterparts, igMFPs exhibit remarkably higher quantum yields, larger Stokes shift, and better photostability. In a proof-of-concept application using pathogen-related G4s as the target, we exploited igMFPs to directly visualize native hepatitis C virus (HCV) RNA genome in living cells via their in situ formation by the chromophore-bound viral G4 structure in the HCV core gene. Furthermore, igMFPs are capable of high contrast HCV RNA imaging in living mice bearing a HCV RNA-presenting mini-organ, providing the first application of FP mimics in whole-animal imaging.


Asunto(s)
Fluorescencia , Colorantes Fluorescentes/química , Proteínas Luminiscentes/química , Ácidos Nucleicos/química , ARN Viral/análisis , Animales , Línea Celular Tumoral , Colorantes Fluorescentes/síntesis química , Hepacivirus/genética , Humanos , Rayos Infrarrojos , Proteínas Luminiscentes/síntesis química , Ratones , ARN Viral/genética , Espectrometría de Fluorescencia
18.
Biomed Res Int ; 2021: 6624744, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34258273

RESUMEN

OBJECTIVE: Genetic variants in the WFS1 gene can cause Wolfram syndrome (WS) or autosomal dominant nonsyndromic low-frequency hearing loss (HL). This study is aimed at investigating the molecular basis of HL in an affected Chinese family and the genotype-phenotype correlation of WFS1 variants. METHODS: The clinical phenotype of the five-generation Chinese family was characterized using audiological examinations and pedigree analysis. Target exome sequencing of 129 known deafness genes and bioinformatics analysis were performed among six patients and four normal subjects to screen suspected pathogenic variants. We built a complete WFS1 protein model to assess the potential effects of the variant on protein structure. RESULTS: A novel heterozygous pathogenic variant NM_006005.3 c.2020G>T (p.Gly674Trp) was identified in the WFS1 gene, located in the C-terminal domain of the wolframin protein. We further showed that HL-related WFS1 missense variants were mainly concentrated in the endoplasmic reticulum (ER) domain. In contrast, WS-related missense variants are randomly distributed throughout the protein. CONCLUSIONS: In this family, we identified a novel variant p.Gly674Trp of WFS1 as the primary pathogenic variant causing the low-frequency sensorineural HL, enriching the mutational spectrum of the WFS1 gene.


Asunto(s)
Retículo Endoplásmico/metabolismo , Genes Dominantes , Pérdida Auditiva/genética , Proteínas de la Membrana/genética , Mutación Missense/genética , Adulto , Anciano de 80 o más Años , Secuencia de Bases , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Moleculares , Linaje , Fenotipo
19.
Neurol Sci ; 42(9): 3857-3863, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33523317

RESUMEN

Intravenous immunoglobulin (IVIg) has been used for neuromyelitis optica spectrum disorder (NMOSD) patients to prevent relapses in several studies. However, efficacy of the rescue treatment of IVIG was just assessed in a small sample research. The aim of this study is to investigate the efficacy of IVIG in NMOSD as a rescue treatment and whether it could reduce the relapse rate. We retrospectively reviewed patients with NMOSD in the First and Second Affiliated Hospital of Wenzhou Medical University. Clinical parameters were extracted from the medical records, such as expanded disability scale score (EDSS) and time to next relapse. Thirty-one events of 20 NMOSD patients were included in the intravenous methylprednisolone (IVMT) + IVIG group and 72 events of 39 patients in the IVMT group. IVMT therapy combined with IVIG could improve the neurological disability when discharged (p < 0.001), whereas patients first attacked did not show a similar trend. Patients who were treated with IVMT + IVIG (17.39 ± 2.75 months) show a longer time to next relapse compared to patients who were treated with IVMT (9.50 ± 0.79 months) (log rank test p = 0.002), especially in relapsed patients or anti-aquaporin-4 antibody (AQP4-Ab) seropositive patients. IVIG might be helpful for NMOSD patients as the rescue treatment and might bring a longer remission, especially for patients with relapse and AQP4-ab seropositive patients.


Asunto(s)
Inmunoglobulinas Intravenosas , Neuromielitis Óptica , Acuaporina 4 , Autoanticuerpos , Humanos , Inmunoglobulinas Intravenosas/uso terapéutico , Metilprednisolona/uso terapéutico , Neuromielitis Óptica/tratamiento farmacológico , Recurrencia , Estudios Retrospectivos
20.
Cell Mol Immunol ; 17(11): 1163-1179, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32963356

RESUMEN

The ability to harness innate immunity is a promising solution for improving cancer immunotherapy. Interferon (IFN) induces expression of IFN-stimulated genes (ISGs) by activating the JAK-STAT signaling pathway to promote innate immunity and inhibit malignant tumor growth, but the functions and mechanisms of most ISGs in cancer regulation are unknown. As an innate immune effector, ISG12a promotes the innate immune response to viral infection. In this study, ISG12a was found to be expressed at low levels in gastrointestinal cancer, represented by hepatocellular cancer (HCC) and gastric cancer (GC), and it identified as a tumor suppressor that affects clinical prognosis. ISG12a silencing accelerated the malignant transformation and epithelial-mesenchymal transition of cancer cells. Mechanistically, ISG12a promoted ß-catenin proteasomal degradation by inhibiting the degradation of ubiquitinated Axin, thereby suppressing the canonical Wnt/ß-catenin signaling pathway. Notably, ß-catenin was identified as a transcription factor for PD-L1. Inhibition of Wnt/ß-catenin signaling by ISG12a suppressed expression of the immune checkpoint PD-L1, rendering cancer cells sensitive to NK cell-mediated killing. This study reveals a mechanism underlying the anticancer effects of IFN. Some ISGs, as represented by ISG12a, may be useful in cancer therapy and prevention. The identified interrelations among innate immunity, Wnt/ß-catenin signaling, and cancer immunity may provide new insight into strategies that will improve the efficiency of immunotherapy.


Asunto(s)
Inmunidad Innata , Proteínas de la Membrana/metabolismo , Neoplasias/inmunología , Vía de Señalización Wnt , Animales , Proteína Axina/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Línea Celular , Humanos , Proteínas de Punto de Control Inmunitario/metabolismo , Células Asesinas Naturales/inmunología , Ratones Endogámicos BALB C , Ratones Desnudos , Modelos Biológicos , Neoplasias/patología , Fenotipo , Pronóstico , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Transcripción Genética , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA