Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Brief Bioinform ; 25(5)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39210506

RESUMEN

Tumorigenesis arises from the dysfunction of cancer genes, leading to uncontrolled cell proliferation through various mechanisms. Establishing a complete cancer gene catalogue will make precision oncology possible. Although existing methods based on graph neural networks (GNN) are effective in identifying cancer genes, they fall short in effectively integrating data from multiple views and interpreting predictive outcomes. To address these shortcomings, an interpretable representation learning framework IMVRL-GCN is proposed to capture both shared and specific representations from multiview data, offering significant insights into the identification of cancer genes. Experimental results demonstrate that IMVRL-GCN outperforms state-of-the-art cancer gene identification methods and several baselines. Furthermore, IMVRL-GCN is employed to identify a total of 74 high-confidence novel cancer genes, and multiview data analysis highlights the pivotal roles of shared, mutation-specific, and structure-specific representations in discriminating distinctive cancer genes. Exploration of the mechanisms behind their discriminative capabilities suggests that shared representations are strongly associated with gene functions, while mutation-specific and structure-specific representations are linked to mutagenic propensity and functional synergy, respectively. Finally, our in-depth analyses of these candidates suggest potential insights for individualized treatments: afatinib could counteract many mutation-driven risks, and targeting interactions with cancer gene SRC is a reasonable strategy to mitigate interaction-induced risks for NR3C1, RXRA, HNF4A, and SP1.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Biología Computacional/métodos , Redes Neurales de la Computación , Mutación , Genes Relacionados con las Neoplasias , Factor Nuclear 4 del Hepatocito/genética , Aprendizaje Automático
2.
New Phytol ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39044689

RESUMEN

N6-methyladenosine (m6A) RNA modification is the most prevalent messenger RNA (mRNA) modification in eukaryotes and plays critical roles in the regulation of gene expression. m6A is a reversible RNA modification that is deposited by methyltransferases (writers) and removed by demethylases (erasers). The function of m6A erasers in plants is highly diversified and their roles in cereal crops, especially in reproductive development essential for crop yield, are largely unknown. Here, we demonstrate that rice OsALKBH5 acts as an m6A demethylase required for the normal progression of male meiosis. OsALKBH5 is a nucleo-cytoplasmic protein, highly enriched in rice anthers during meiosis, that associates with P-bodies and exon junction complexes, suggesting that it is involved in regulating mRNA processing and abundance. Mutations of OsALKBH5 cause reduced double-strand break (DSB) formation, severe defects in DSB repair, and delayed meiotic progression, leading to complete male sterility. Transcriptome analysis and m6A profiling indicate that OsALKBH5-mediated m6A demethylation stabilizes the mRNA level of multiple meiotic genes directly or indirectly, including several genes that regulate DSB formation and repair. Our study reveals the indispensable role of m6A metabolism in post-transcriptional regulation of meiotic progression in rice.

3.
J Comput Biol ; 31(5): 445-457, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38752891

RESUMEN

ABSTRACT An alternative transcription start site (ATSS) is a major driving force for increasing the complexity of transcripts in human tissues. As a transcriptional regulatory mechanism, ATSS has biological significance. Many studies have confirmed that ATSS plays an important role in diseases and cell development and differentiation. However, exploration of its dynamic mechanisms remains insufficient. Identifying ATSS change points during cell differentiation is critical for elucidating potential dynamic mechanisms. For relative ATSS usage as percentage data, the existing methods lack sensitivity to detect the change point for ATSS longitudinal data. In addition, some methods have strict requirements for data distribution and cannot be applied to deal with this problem. In this study, the Bayesian change point detection model was first constructed using reparameterization techniques for two parameters of a beta distribution for the percentage data type, and the posterior distributions of parameters and change points were obtained using Markov Chain Monte Carlo (MCMC) sampling. With comprehensive simulation studies, the performance of the Bayesian change point detection model is found to be consistently powerful and robust across most scenarios with different sample sizes and beta distributions. Second, differential ATSS events in the real data, whose change points were identified using our method, were clustered according to their change points. Last, for each change point, pathway and transcription factor motif analyses were performed on its differential ATSS events. The results of our analyses demonstrated the effectiveness of the Bayesian change point detection model and provided biological insights into cell differentiation.


Asunto(s)
Teorema de Bayes , Diferenciación Celular , Sitio de Iniciación de la Transcripción , Diferenciación Celular/genética , Humanos , Cadenas de Markov , Método de Montecarlo , Modelos Genéticos , Algoritmos , Simulación por Computador
4.
EBioMedicine ; 95: 104739, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37544202

RESUMEN

BACKGROUND: Dengue virus (DENV) infection during pregnancy increases the risk of adverse fetal outcomes, which has become a new clinical challenge. However, the underlying mechanism remains unknown. METHODS: The effect of DENV-2 infection on fetuses was investigated using pregnant interferon α/ß receptor-deficient (Ifnar1-/-) mice. The histopathological changes in the placentas were analyzed by morphological techniques. A mouse inflammation array was used to detect the cytokine and chemokine profiles in the serum and placenta. The infiltration characteristics of inflammatory cells in the placentas were evaluated by single-cell RNA sequencing. FINDINGS: Fetal growth restriction observed in DENV-2 infection was mainly caused by the destruction of the placental vasculature rather than direct damage from the virus in our mouse model. After infection, neutrophil infiltration into the placenta disrupts the expression profile of matrix metalloproteinases, which leads to placental dysvascularization and insufficiency. Notably, similar histopathological changes were observed in the placentas from DENV-infected puerperae. INTERPRETATION: Neutrophils play key roles in placental histopathological damage during DENV infection, which indicates that interfering with aberrant neutrophil infiltration into the placenta may be an important therapeutic target for adverse pregnancy outcomes in DENV infection. FUNDING: The National Key Research and Development Plans of China (2021YFC2300200-02 to J.A., 2019YFC0121905 to Q.Z.C.), the National Natural Science Foundation of China (NSFC) (U1902210 and 81972979 to J. A., 81902048 to Z. Y. S., and 82172266 to P.G.W.), and the Support Project of High-level Teachers in Beijing Municipal Universities in the Period of 13th Five-year Plan, China (IDHT20190510 to J. A.).


Asunto(s)
Virus del Dengue , Placenta , Humanos , Ratones , Embarazo , Femenino , Animales , Placenta/metabolismo , Retardo del Crecimiento Fetal/etiología , Infiltración Neutrófila , Citocinas/metabolismo
5.
Plant Physiol ; 192(3): 2301-2317, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-36861636

RESUMEN

Heat stress has a deleterious effect on male fertility in rice (Oryza sativa), but mechanisms to protect against heat stress in rice male gametophytes are poorly understood. Here, we have isolated and characterized a heat-sensitive male-sterile rice mutant, heat shock protein60-3b (oshsp60-3b), that shows normal fertility at optimal temperatures but decreasing fertility as temperatures increase. High temperatures interfered with pollen starch granule formation and reactive oxygen species (ROS) scavenging in oshsp60-3b anthers, leading to cell death and pollen abortion. In line with the mutant phenotypes, OsHSP60-3B was rapidly upregulated in response to heat shock and its protein products were localized to the plastid. Critically, overexpression of OsHSP60-3B enhanced the heat tolerance of pollen in transgenic plants. We demonstrated that OsHSP60-3B interacted with FLOURY ENDOSPERM6(FLO6) in plastids, a key component involved in the starch granule formation in the rice pollen. Western blot results showed that FLO6 level was substantially decreased in oshsp60-3b anthers at high temperature, indicating that OsHSP60-3B is required to stabilize FLO6 when temperatures exceed optimal conditions. We suggest that in response to high temperature, OsHSP60-3B interacts with FLO6 to regulate starch granule biogenesis in rice pollen and attenuates ROS levels in anthers to ensure normal male gametophyte development in rice.


Asunto(s)
Respuesta al Choque Térmico , Oryza , Almidón , Temperatura , Fertilidad/genética , Respuesta al Choque Térmico/genética , Oryza/metabolismo , Plastidios/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Almidón/metabolismo
6.
Biochimie ; 148: 46-54, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29501482

RESUMEN

A novel extracellular laccase was purified from fermentation broth of the white rot fungus Trametes sp. F1635 by a three-step protocol including two consecutive ion-exchange chromatography steps on DEAE-Sepharose and SP-Sepharose, and a final gel-filtration on Superdex 75. The purified laccase (TsL) was a monomeric protein with the molecular mass of 64.8 kDa. It demonstrated high oxidation activity of 4.00 × 104 U/mg towards ABTS. Its N-terminal amino acid sequence was AIGPVADLTIINNAV which was unique and sharing high similarity of other fungal laccases. TsL was a yellow laccase based on absorption spectrum analysis. It demonstrated an acidic pH optimum of 2.6 and temperature optimum of 50 °C towards ABTS. The Km and Vmax values towards ABTS were estimated to 18.58 µM and 1.35 µmol/min, respectively. TsL manifested effective decolorization activity towards eriochrome black T (EBT), remazol brilliant blue R (RBBR), malachite green (MG), and eriochrome black T (EBT) (over 60%). Violuric acid (VA) and acetosyringone (AS) were the optimal mediators for the laccase in dye decolorization. Results suggest that TsL demonstrates great potential for dye decolorization and water treatment.


Asunto(s)
Colorantes/metabolismo , Espacio Extracelular/enzimología , Lacasa/metabolismo , Trametes/citología , Secuencia de Aminoácidos , Color , Fermentación , Concentración de Iones de Hidrógeno , Cinética , Lacasa/química , Peso Molecular , Temperatura , Trametes/enzimología
8.
Plant Physiol ; 169(3): 2064-79, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26392263

RESUMEN

Male reproduction in higher plants requires the support of various metabolites, including lipid molecules produced in the innermost anther wall layer (the tapetum), but how the molecules are allocated among different anther tissues remains largely unknown. Previously, rice (Oryza sativa) ATP binding cassette G15 (ABCG15) and its Arabidopsis (Arabidopsis thaliana) ortholog were shown to be required for pollen exine formation. Here, we report the significant role of OsABCG26 in regulating the development of anther cuticle and pollen exine together with OsABCG15 in rice. Cytological and chemical analyses indicate that osabcg26 shows reduced transport of lipidic molecules from tapetal cells for anther cuticle development. Supportively, the localization of OsABCG26 is on the plasma membrane of the anther wall layers. By contrast, OsABCG15 is polarly localized in tapetal plasma membrane facing anther locules. osabcg26 osabcg15 double mutant displays an almost complete absence of anther cuticle and pollen exine, similar to that of osabcg15 single mutant. Taken together, we propose that OsABCG26 and OsABCG15 collaboratively regulate rice male reproduction: OsABCG26 is mainly responsible for the transport of lipidic molecules from tapetal cells to anther wall layers, whereas OsABCG15 mainly is responsible for the export of lipidic molecules from the tapetal cells to anther locules for pollen exine development.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Regulación de la Expresión Génica de las Plantas , Oryza/genética , Transportadoras de Casetes de Unión a ATP/genética , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Flores/ultraestructura , Mutación , Oryza/crecimiento & desarrollo , Oryza/fisiología , Oryza/ultraestructura , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/genética , Polen/crecimiento & desarrollo , Polen/fisiología , Polen/ultraestructura , Reproducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA