Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Chemosphere ; 257: 127210, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32502738

RESUMEN

BiOI nanosheets have been successfully deposited on the porous Bi2O3 nanorobs via a one-pot precipitation method. The physicochemical features of the as-prepared materials were characterized in detail by a series of techniques, and the results revealed that BiOI nanosheets were evenly distributed on the porous Bi2O3 nanorobs. Because of higher photogenerated electron-hole pairs separation efficiency and the larger specific surface area compared to the pristine Bi2O3 and BiOI, the 50%Bi2O3/BiOI composite exhibited significantly enhanced photocatalytic activity for Cr(VI) reduction under visible light irradiation, and the reduction rate constant was 0.02002 min-1, which was about 27.4 and 2.6 times higher than that of pure Bi2O3 (0.00073 min-1) and BiOI (0.00769 min-1), respectively. Moreover, the 50%Bi2O3/BiOI composite also possessed the excellent photochemical stability and recyclability, thereby facilitating its wastewater treatment application.


Asunto(s)
Bismuto/química , Cromo/química , Catálisis , Color , Luz , Procesos Fotoquímicos
2.
Water Res ; 156: 1-8, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30897545

RESUMEN

Very recently, several studies have found that homogeneous reducing agents (e.g., sodium thiosulfate (Na2S2O3), and sodium sulfite (Na2SO3)) can activate ferrate to enhance the degradation of selected contaminants. In this work, it was found that heterogeneous carbon nanotube (CNT) could accelerate ferrate (Fe(VI)) for the degradation of bromophenols (BrPs) of environmental concerns and alleviate the appearance of undesired by-products in effluent. Fe(VI) could react with BrPs over a wide pH range of 6-10 with apparent second-order rate constants of 1.8-1850 M-1 s-1. Electrospray ionization-triple quadrupole mass spectrometry (ESI-QqQMS) analysis showed that dibrominated dihydroxylated biphenyls and dibrominated phenoxyphenols were possibly formed via coupling reaction of BrPs radicals generated from Fe(VI) oxidation through one-electron transfer. The presence of CNT could remarkably accelerate the degradation rates of BrPs by Fe(VI) in a wide pH range from 7 to 10. Moreover, the formed undesired polybrominated products during Fe(VI)/CNT oxidation were absorbed on CNT surface and thus removed from treated water. The Fe(VI)/CNT system was capable of selectively oxidizing electron-rich pollutants (e.g., BrPs, and sulfamethoxazole (SMX)), but reluctant to iopamidol (IPM) and nitrobenzene (NB). High-valent metal-oxo intermediates Fe(V)/Fe(IV) formed in situ from the reaction of CNT with Fe(VI) were likely responsible for this activation effect of CNT, which was further confirmed via using methyl phenyl sulfoxide (PMSO) as a probe compound. Comparatively, homogeneous reducing agent Na2S2O3 could enhance Fe(VI) degradation of BrPs at pH 7 and 8, while undesired polybrominated products were detected in effluent from Fe(VI)/Na2S2O3 system. These findings have crucial implications for the development of a promising oxidation process by combination of Fe(VI) and CNT for water and wastewater treatment.


Asunto(s)
Nanotubos de Carbono , Contaminantes Químicos del Agua , Hierro , Cinética , Oxidación-Reducción
3.
Environ Sci Technol ; 52(23): 13897-13907, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30379540

RESUMEN

Ferrate (K2FeO4) is a powerful oxidant and up to 3 mol of electrons could be captured by 1 mol of ferrate in the theoretical conversion of Fe(VI)-Fe(V)-Fe(IV)-Fe(III). However, it is reported that the utilization efficiency of the ferrate oxidation capacity is quite low because of the rapid autodecomposition of intermediate iron species, which negatively influences the potential of ferrate on organic pollutants control. We accidentally found that for the ferrate oxidation of carbamazepine (CBZ), bisphenol S (BPS), diclofenac (DCF), and ciprofloxacin (CIP), the determined reaction rate constants were 1.7-2.4 times lower in phosphate buffer than those in borate buffer at pH 8.0. For the reaction of ferrate with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) at pH 7.0, the determined reaction stoichiometries were 1:1.04 in 100 mM phosphate buffer, 1:1.18 in 10 mM phosphate buffer, and 1:1.93 in 10 mM borate buffer, respectively. The oxidation ability of ferrate seems depressed in phosphate buffer. A kinetic model involving the oxidation of ABTS by Fe(VI), Fe(V) and Fe(IV) species was developed and fitted the ABTS•+ formation kinetics well under different buffer conditions. The results showed that phosphate exhibited little influence on the oxidation ability of Fe(VI) and Fe(IV) species, but decreased the specific rate constants of ABTS with Fe(V) species by 1-2 orders of magnitude, resulting in the outcompeting of Fe(V) autodecomposition pathway. The complexation between phosphate anions and Fe(V) species may account for the inhibition effect of phosphate buffer. Considering that many studies regarding ferrate oxidation were carried out in phosphate buffer, the actual oxidation ability of ferrate may be underestimated.


Asunto(s)
Fosfatos , Contaminantes Químicos del Agua , Compuestos Férricos , Concentración de Iones de Hidrógeno , Hierro , Cinética , Oxidantes , Oxidación-Reducción
4.
RSC Adv ; 8(33): 18419-18426, 2018 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35541147

RESUMEN

Photocatalysis has been regarded as an attractive strategy for the elimination of contaminants, but its performance is usually limited by the fast recombination of photogenerated electron-holes. A heterojunction photocatalyst could achieve the effective separation of electron-holes. However, the electrons migrate to the less negative band while holes move to the less positive band, leading to a weakened redox ability. Z-scheme photocatalysis is a feasible way to realize the efficient separation of photogenerated electron-holes without sacrificing the reductive ability of electrons and oxidative ability of holes. In this work, a new Z-scheme photocatalyst, composed of g-C3N4 (photocatalyst I), FeWO4 (photocatalyst II) and RGO (electron mediator), was fabricated through a facile hydrothermal and mixing method. The effect of contact ways (the electron mediator firstly combined with photocatalyst I or with photocatalyst II) on the Z-scheme photocatalytic performance was investigated. The photocatalytic removal rate of rhodamine B (RhB) was largely enhanced by the construction of a Z-scheme photocatalyst, compared with the g-C3N4/FeWO4 composite without RGO. The contact ways could affect the photocatalytic ability of a Z-scheme photocatalyst. The enhanced photocatalytic performance was attributed to the Z-scheme induced efficient separation of photogenerated charge carriers. Furthermore, remaining holes (on the VB of FeWO4) or remaining electrons (on the CB of g-C3N4) with powerful oxidation or reduction ability would promote the photocatalytic degradation of RhB.

5.
Water Sci Technol ; 73(12): 2882-7, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27332832

RESUMEN

This research focuses on the effects of microwave-assisted activated carbon fibre (ACF) (MW-ACF) treatment on sewage sludge at alkaline pH. The disintegration and biodegradability of sewage sludge were studied. It was found that the MW-ACF process at alkaline pH provided a rapid and efficient process to disrupt the microbial cells in the sludge. The results suggested that when irradiated at 800 W MW for 110 s with a dose of 1.0 g ACF/g solid concentration (SS) at pH 10.5, the MW-ACF pretreatment achieved 55% SS disintegration, 23% greater than the value of MW alone (32%). The concentration of total nitrogen, total phosphorus, supernatant soluble chemical oxygen demand, protein, and polysaccharide increased by 60%, 144%, 145%, 74%, and 77%, respectively. An increase in biogas production by 63.7% was achieved after 20 days of anaerobic digestion (AD), compared to the control. The results indicated that the MW-ACF pretreatment process at alkaline pH provides novel sludge management options in disintegration of sewage sludge for further AD.


Asunto(s)
Carbono/química , Carbón Orgánico/química , Microondas , Aguas del Alcantarillado/análisis , Eliminación de Residuos Líquidos/métodos , Biodegradación Ambiental , Fibra de Carbono , Concentración de Iones de Hidrógeno , Solubilidad , Eliminación de Residuos Líquidos/instrumentación
6.
J Colloid Interface Sci ; 393: 126-9, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23246131

RESUMEN

The porous "sponge-like" BiVO(4) films were prepared with the polystyrene (PS) as pore forming material and F-doped SnO(2) (FTO) glass as substrate. SEM observation displayed that "sponge-like" BiVO(4) film with interconnect pore structure was successfully obtained. DRS analysis indicated the light absorption ability of BiVO(4) film was enhanced by constructing porous structure. The measurement of surface area showed that porosity could elevate the surface area of the BiVO(4) film. The experiment of PEC degradation of phenol showed that the degradation rate on the porous BiVO(4) film (with 200 µL) was 2.68 times as much as that on the BiVO(4) film. The enhanced PEC performance was attributed to the increased photo absorption ability, elevated surface area, and more efficient reactant transfer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA