Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 760
Filtrar
1.
Front Genet ; 15: 1398240, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988837

RESUMEN

Background: Schizophrenia (SCZ) is a severe neurodevelopmental disorder with brain dysfunction. This study aimed to use bioinformatic analysis to identify candidate blood biomarkers for SCZ. Methods: The study collected peripheral blood leukocyte samples of 9 SCZ patients and 20 healthy controls for RNA sequencing analysis. Bioinformatic analyses included differentially expressed genes (DEGs) analysis, pathway enrichment analysis, and weighted gene co-expression network analysis (WGCNA). Results: This study identified 1,205 statistically significant DEGs, of which 623 genes were upregulated and 582 genes were downregulated. Functional enrichment analysis showed that DEGs were mainly enriched in cell chemotaxis, cell surface, and serine peptidase activity, as well as involved in Natural killer cell-mediated cytotoxicity. WGCNA identified 16 gene co-expression modules, and five modules were significantly correlated with SCZ (p < 0.05). There were 106 upregulated genes and 90 downregulated genes in the five modules. The top ten genes sorted by the Degree algorithm were RPS28, BRD4, FUS, PABPC1, PCBP1, PCBP2, RPL27A, RPS21, RAG1, and RPL27. RAG1 and the other nine genes belonged to the turquoise and pink module respectively. Pathway enrichment analysis indicated that these 10 genes were mainly involved in processes such as Ribosome, cytoplasmic translation, RNA binding, and protein binding. Conclusion: This study finds that the gene functions in key modules and related enrichment pathways may help to elucidate the molecular pathogenesis of SCZ, and the potential of key genes to become blood biomarkers for SCZ warrants further validation.

2.
World J Gastrointest Surg ; 16(6): 1592-1600, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38983330

RESUMEN

BACKGROUND: Malignant obstructive jaundice (MOJ) is a condition characterized by varying degrees of bile duct stenosis and obstruction, accompanied by the progressive development of malignant tumors, leading to high morbidity and mortality rates. Currently, the two most commonly employed methods for its management are percutaneous transhepatic bile duct drainage (PTBD) and endoscopic ultrasound-guided biliary drainage (EUS-BD). While both methods have demonstrated favorable outcomes, additional research needs to be performed to determine their relative efficacy. AIM: To compare the therapeutic effectiveness of EUS-BD and PTBD in treating MOJ. METHODS: This retrospective analysis, conducted between September 2015 and April 2023 at The Third Affiliated Hospital of Soochow University (The First People's Hospital of Changzhou), involved 68 patients with MOJ. The patients were divided into two groups on the basis of surgical procedure received: EUS-BD subgroup (n = 33) and PTBD subgroup (n = 35). Variables such as general data, preoperative and postoperative indices, blood routine, liver function indices, myocardial function indices, operative success rate, clinical effectiveness, and complication rate were analyzed and compared between the subgroups. RESULTS: In the EUS-BD subgroup, hospital stay duration, bile drainage volume, effective catheter time, and clinical effectiveness rate were superior to those in the PTBD subgroup, although the differences were not statistically significant (P > 0.05). The puncture time for the EUS-BD subgroup was shorter than that for the PTBD subgroup (P < 0.05). Postoperative blood routine, liver function index, and myocardial function index in the EUS-BD subgroup were significantly lower than those in the PTBD subgroup (P < 0.05). Additionally, the complication rate in the EUS-BD subgroup was lower than in the PTBD subgroup (P < 0.05). CONCLUSION: EUS-BD may reduce the number of punctures, improve liver and myocardial functions, alleviate traumatic stress, and decrease complication rates in MOJ treatment.

3.
Food Chem ; 460(Pt 1): 140421, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39032293

RESUMEN

NaCl and extrusion temperature have an important influence on the qualities of high-moisture textured proteins, but the influence mechanism is still unclear. Therefore, this study prepared high-moisture textured yeast protein (HMTYP) with different NaCl contents (0%-4%) under different extrusion temperatures (170 °C, 180 °C) and characterized their physicochemical properties. The results showed that the HMTYP containing 1% and 2% NaCl prepared at 180 °C contained a strong fibrous structure. The possible mechanism was as follows: YP could not be sufficiently melted at 170 °C after adding NaCl, causing a decrease in the structural strength; however, at 180 °C, YP still reached a fully molten state even though 1%-2% NaCl was added. After YP sufficiently melted, NaCl enhanced the cross-linking and aggregation of proteins during cooling, which improved the textural properties of HMTYP. Accordingly, NaCl and extrusion temperature could combine to adjust the fibrous structure and texture of HMTYP.

4.
Food Funct ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967438

RESUMEN

The stability of bioactive peptides under various food processing conditions is the basis for their use in industrial manufacturing. This study aimed to identify natural ACE inhibitors with excellent stability and investigate their physicochemical properties and putative molecular mechanisms. Five novel ACE inhibitory peptides (QDPLFPL, FPGVSPF, SPAQLLPF, LVPYRP, and WYWPQ) were isolated and identified using RP-HPLC and Nano LC-MS/MS with foxtail millet protein hydrolysates as the raw material. These peptides are non-toxic and exhibit strong ACE inhibitory activity in vitro (IC50 values between 0.13 mg mL-1 and 0.56 mg mL-1). In addition to QDPLFPL, FPGVSPF, SPAQLLPF, LVPYRP, and WYWPQ have excellent human intestinal absorption. Compared to FPGVSPF and SPAQLLPF, the stable helical structure of LVPYRP and WYWPQ allows them to maintain high stability under conditions that mimic gastrointestinal digestion and various food processing (temperatures, pH, sucrose, NaCl, citric acid, sodium benzoate, Cu2+, Zn2+, K+, Mg2+, Ca2+). The results of molecular docking and molecular dynamics simulation suggest that LVPYRP has greater stability and binding capacity to ACE than WYWPQ. LVPYRP might attach to the active pockets (S1, S2, and S1') of ACE via hydrogen bonds and hydrophobic interactions, then compete with Zn2+ in ACE to demonstrate its ACE inhibitory activity. The binding of LVPYRP to ACE enhances the rearrangement of ACE's active structural domains, with electrostatic and polar solvation energy contributing the most energy to the binding. Our findings suggested that LVPYRP derived from foxtail millet protein hydrolysates has the potential to be incorporated into functional foods to provide antihypertensive benefits.

5.
Food Chem ; 457: 139843, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38955120

RESUMEN

Dried-bonito (Katsuobushi) exhibits a unique uniform "glass-like" texture after traditional smoke-drying. Herein, we developed a novel processing method for dried-bonito and elucidated the mechanism of transformation of loose muscle into a "glass-like" texture in terms of texture, microstructure, and protein properties. Our findings showed that the unfolding and aggregation of proteins after thermal induction was a key factor in shaping the "glass-like" texture in bonito muscle. During processing, myofibrils aggregated, the originally alternating thick and thin filaments contracted laterally and aligned into a straight line, and protein cross-linking increased. Secondary structural analysis revealed a reduction in unstable ß-turn content from 26.28% to 15.06%. Additionally, an increase in the content of SS bonds was observed, and the conformation changed from g-g-t to a stable g-g-g conformation, enhanced protein conformational stability. Taken together, our findings provide a theoretical basis for understanding the mechanism of formation of the uniform "glass-like" texture in dried-bonito.

6.
Research (Wash D C) ; 7: 0391, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38887277

RESUMEN

Dipeptidyl peptidase-IV (DPP-4) enzyme inhibitors are a promising category of diabetes medications. Bioactive peptides, particularly those derived from bovine milk proteins, play crucial roles in inhibiting the DPP-4 enzyme. This study describes a comprehensive strategy for DPP-4 inhibitory peptide discovery and validation that combines machine learning and virtual proteolysis techniques. Five machine learning models, including GBDT, XGBoost, LightGBM, CatBoost, and RF, were trained. Notably, LightGBM demonstrated superior performance with an AUC value of 0.92 ± 0.01. Subsequently, LightGBM was employed to forecast the DPP-4 inhibitory potential of peptides generated through virtual proteolysis of milk proteins. Through a series of in silico screening process and in vitro experiments, GPVRGPF and HPHPHL were found to exhibit good DPP-4 inhibitory activity. Molecular docking and molecular dynamics simulations further confirmed the inhibitory mechanisms of these peptides. Through retracing the virtual proteolysis steps, it was found that GPVRGPF can be obtained from ß-casein through enzymatic hydrolysis by chymotrypsin, while HPHPHL can be obtained from κ-casein through enzymatic hydrolysis by stem bromelain or papain. In summary, the integration of machine learning and virtual proteolysis techniques can aid in the preliminary determination of key hydrolysis parameters and facilitate the efficient screening of bioactive peptides.

7.
J Environ Manage ; 361: 121197, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38820791

RESUMEN

Heavy metal pollution of agricultural soil is a major global concern, prompting the establishment of maximum allowable limits (MALs) to ensure food safety and protect human health. This study collected and compared MALs for six heavy metals (As, Cd, Hg, Pb, Zn, and Cu) in agricultural soils from representative countries and organizations (EU and WHO/FAO). The research evaluated the critical health risks and efficacy of these MALs under the hypothetical scenario of metals concentrations reaching the maximum allowable level. Safe thresholds for heavy metals were then derived based on maximum acceptable health risk levels. The comparative analysis revealed significant variations in the specific limit values and terms of MALs across countries and organizations, even for the same metal. This suggests that there is no consensus among countries and organizations regarding the level of metal-related health risks. Furthermore, the risk analysis of metal concentrations reaching the maximum level accentuated heightened risks associated with As, suggesting that the current risk of soil As exposure was underestimated, particularly for children. However, soil Cu, Cd, and Zn limits generally resulted in low health risks, implying that the current limits may overestimate their hazard. Overall, the results highlight that the current MALs for soil heavy metals may not fully safeguard human health. There is a critical need to optimize current soil MALs based on localized risks and the actual impact of these metals on human health. It is suggested to appropriately lower the limits of metals (such as As) whose impact on health risks is underestimated, and cautiously increase the limits of metals (such as Cu, Cd, and Zn) that currently pose minor health risks. This approach aims to reduce both over and insufficient protection problems of soil heavy metal MALs, emphasizing the importance of considering the locality in setting these limits.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Suelo , Metales Pesados/análisis , Medición de Riesgo , Contaminantes del Suelo/análisis , Humanos , Suelo/química , Monitoreo del Ambiente
8.
PLoS Pathog ; 20(5): e1011669, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38781259

RESUMEN

The virus severe acute respiratory syndrome coronavirus 2, SARS-CoV-2, is the causative agent of the current COVID-19 pandemic. It possesses a large 30 kilobase (kb) genome that encodes structural, non-structural, and accessory proteins. Although not necessary to cause disease, these accessory proteins are known to influence viral replication and pathogenesis. Through the synthesis of novel infectious clones of SARS-CoV-2 that lack one or more of the accessory proteins of the virus, we have found that one of these accessory proteins, ORF8, is critical for the modulation of the host inflammatory response. Mice infected with a SARS-CoV-2 virus lacking ORF8 exhibit increased weight loss and exacerbated macrophage infiltration into the lungs. Additionally, infection of mice with recombinant SARS-CoV-2 viruses encoding ORF8 mutations found in variants of concern reveal that naturally occurring mutations in this protein influence disease severity. Our studies with a virus lacking this ORF8 protein and viruses possessing naturally occurring point mutations in this protein demonstrate that this protein impacts pathogenesis.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , SARS-CoV-2/genética , COVID-19/virología , COVID-19/inmunología , COVID-19/patología , COVID-19/genética , Ratones , Humanos , Progresión de la Enfermedad , Proteínas Virales/genética , Proteínas Virales/metabolismo , Pulmón/virología , Pulmón/patología , Replicación Viral , Neumonía/virología , Neumonía/patología , Chlorocebus aethiops , Mutación , Células Vero , Femenino
9.
Foods ; 13(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38672817

RESUMEN

Alcohol abuse can lead to alcoholic liver disease, becoming a major global burden. Hovenia dulcis fruit peduncle polysaccharides (HDPs) have the potential to alleviate alcoholic liver injury and play essential roles in treating alcohol-exposed liver disease; however, the hepatoprotective effects and mechanisms remain elusive. In this study, we investigated the hepatoprotective effects of HDPs and their potential mechanisms in alcohol-exposed mice through liver metabolomics and gut microbiome. The results found that HDPs reduced medium-dose alcohol-caused dyslipidemia (significantly elevated T-CHO, TG, LDL-C), elevated liver glycogen levels, and inhibited intestinal-hepatic inflammation (significantly decreased IL-4, IFN-γ and TNF-α), consequently reversing hepatic pathological changes. When applying gut microbiome analysis, HDPs showed significant decreases in Proteobacteria, significant increases in Firmicutes at the phylum level, increased Lactobacillus abundance, and decreased Enterobacteria abundance, maintaining the composition of gut microbiota. Further hepatic metabolomics analysis revealed that HDPs had a regulatory effect on hepatic fatty acid metabolism, by increasing the major metabolic pathways including arachidonic acid and glycerophospholipid metabolism, and identified two important metabolites-C00157 (phosphatidylcholine, a glycerophospholipid plays a central role in energy production) and C04230 (1-Acyl-sn-glycero-3-phosphocholine, a lysophospholipid involved in the breakdown of phospholipids)-involved in the above metabolism. Overall, HDPs reduced intestinal dysbiosis and hepatic fatty acid metabolism disorders in alcohol-exposed mice, suggesting that HDPs have a beneficial effect on alleviating alcohol-induced hepatic metabolic disorders.

10.
Nutr Metab Cardiovasc Dis ; 34(7): 1631-1638, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38653673

RESUMEN

BACKGROUND AND AIMS: It has been reported that maresin 1 (MaR1) is able to protect against the development of atherogenesis in cellular and animal models. This study was performed to investigate whether plasma MaR1 is associated with the risk of atherosclerotic cardiovascular disease (ASCVD) at the population level. METHODS AND RESULTS: The study included 2822 non-ASCVD participants from a community-based cohort who were followed for about 8 years. Hazard ratios (HRs) and 95% confidence intervals (95% CIs) for ASCVD events according to baseline MaR1 quartiles were calculated using the Cox proportional hazards model. During follow-up, a total of 290 new ASCVD cases were identified. The restricted cubic spline analysis indicated a linear dose-response association between plasma MaR1 and incident ASCVD. In addition, the adjusted-HR (95% CI) for ASCVD events associated with one standard deviation increase in MaR1 was 0.79 (0.68-0.91). Moreover, the adjusted-HRs (95% CIs) for ASCVD events associated with the second, third and fourth quartiles versus the first quartile of plasma MaR1 were 1.00, 1.04 (0.76, 1.42), 0.88 (0.64, 1.22) and 0.58 (0.41, 0.84), respectively. Mediation analyses showed that the association between MaR1 and incident ASCVD was partially mediated by small dense low-density lipoprotein cholesterol, with a mediation proportion of 9.23%. Further, the net reclassification improvement and integrated discrimination improvement of ASCVD risk were significantly improved when MaR1 was added to basic model established by conventional risk factors (all p < 0.01). CONCLUSIONS: Elevated plasma MaR1 concentrations are associated with a lower risk of ASCVD development.


Asunto(s)
Aterosclerosis , Biomarcadores , Ácidos Docosahexaenoicos , Humanos , Masculino , Femenino , Persona de Mediana Edad , Aterosclerosis/epidemiología , Aterosclerosis/sangre , Aterosclerosis/diagnóstico , Medición de Riesgo , Incidencia , China/epidemiología , Biomarcadores/sangre , Anciano , Factores de Tiempo , Ácidos Docosahexaenoicos/sangre , Adulto , Pronóstico , Estudios Prospectivos , Factores de Riesgo , Factores Protectores , Pueblos del Este de Asia
11.
Biomed Environ Sci ; 37(2): 178-186, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38582980

RESUMEN

Objective: This study aimed to compare the current Essen rabies post-exposure immunization schedule (0-3-7-14-28) in China and the simple 4-dose schedule (0-3-7-14) newly recommended by the World Health Organization in terms of their safety, efficacy, and protection. Methods: Mice were vaccinated according to different immunization schedules, and blood was collected for detection of rabies virus neutralizing antibodies (RVNAs) on days 14, 21, 28, 35, and 120 after the first immunization. Additionally, different groups of mice were injected with lethal doses of the CVS-11 virus on day 0, subjected to different rabies immunization schedules, and assessed for morbidity and death status. In a clinical trial, 185 rabies-exposed individuals were selected for post-exposure vaccination according to the Essen schedule, and blood was collected for RVNAs detection on days 28 and 42 after the first immunization. Results: A statistically significant difference in RVNAs between mice in the Essen and 0-3-7-14 schedule groups was observed on the 35th day ( P < 0.05). The groups 0-3-7-14, 0-3-7-21, and 0-3-7-28 showed no statistically significant difference ( P > 0.05) in RVNAs levels at any time point. The post-exposure immune protective test showed that the survival rate of mice in the control group was 20%, whereas that in the immunization groups was 40%. In the clinical trial, the RVNAs positive conversion rates on days 28 (14 days after 4 doses) and 42 (14 days after 5 doses) were both 100%, and no significant difference in RVNAs levels was observed ( P > 0.05). Conclusion: The simple 4-dose schedule can produce sufficient RVNAs levels, with no significant effect of a delayed fourth vaccine dose (14-28 d) on the immunization potential.


Asunto(s)
Vacunas Antirrábicas , Virus de la Rabia , Rabia , Animales , Ratones , Rabia/prevención & control , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Vacunación , China , Profilaxis Posexposición
12.
Front Microbiol ; 15: 1344162, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38486698

RESUMEN

Objective: Tuberculous meningitis (TBM) is the most severe form of tuberculosis (TB). The purpose of this study was to explore the relationship between the number of natural killer (NK) cells and adaptive immune status, and disease severity in TBM patients. Methods: We conducted a retrospective study on 244 TB patients and 146 healthy control subjects in the 8th Medical Center of the PLA General Hospital from March 2018 and August 2023. Results: The absolute count of NK cells in the peripheral blood of TBM patients was significantly lower than that in normal controls (NC), latent tuberculosis infection (LTBI), and non-severe TB (NSTB) patients (p < 0.05). The proportion of TBM patients (48.7%) with a lower absolute count of NK cells than the normal reference value was significantly higher than that in NC (5.2%) and LTBI groups (4.0%) (p < 0.05), and slightly higher than that in NSTB group (36.0%) (p > 0.05). The absolute counts of lymphocyte subsets in TBM combined with other active TB group, etiology (+) group, IGRA (-) group, and antibody (+) group were lower than that in simple TBM group, etiology (-) group, IGRA (+) group, and antibody (-) group, respectively. The CD3+ T, NK, and B cells in BMRC-stage III TBM patients were significantly lower than those in stage I and stage II patients (p < 0.05). The counts of CD3+ T, CD4+ T, and B cells in the etiology (+) group were significantly lower than those in the etiology (-) group (p < 0.05). Conclusion: The absolute counts of lymphocyte subsets in the peripheral blood of TBM patients were significantly decreased, especially in NK cells. The reduction of these immune cells was closely related to the disease severity and had a certain correlation with cellular and humoral immune responses. This study helps to better understand the immune mechanism of TBM and provides reliable indicators for evaluating the immune status of TBM patients in clinical practice.

13.
Biotechnol Adv ; 72: 108338, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38460741

RESUMEN

Non-homogeneous enzyme-catalyzed systems are more widely used than homogeneous systems. Distinguished from the conventional biphasic approach, Pickering emulsion stabilized by ultrafine solid particles opens up an innovative platform for biocatalysis. Their vast specific surface area significantly enhances enzyme-substrate interactions, dramatically increasing catalytic efficiency. This review comprehensively explores various aspects of Pickering emulsion biocatalysis, provides insights into the multiple types and mechanisms of its catalysis, and offers strategies for material design, enzyme immobilization, emulsion formation control, and reactor design. Characterization methods are summarized for the determination of drop size, emulsion type, interface morphology, and emulsion potential. Furthermore, recent reports on the design of stimuli-responsive reaction systems are reviewed, enabling the simple control of demulsification. Moreover, the review explores applications of Pickering emulsion in single-step, cascade, and continuous flow reactions and outlines the challenges and future directions for the field. Overall, we provide a review focusing on Pickering emulsions catalysis, which can draw the attention of researchers in the field of catalytic system design, further empowering next-generation bioprocessing.


Asunto(s)
Enzimas Inmovilizadas , Biocatálisis , Emulsiones/química , Catálisis , Enzimas Inmovilizadas/química
14.
Nat Commun ; 15(1): 2399, 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38493158

RESUMEN

MicroRNAs (miRNAs) play a key role in regulating gene expression and their biogenesis is precisely controlled through modulating the activity of microprocessor. Here, we report that CWC15, a spliceosome-associated protein, acts as a positive regulator of miRNA biogenesis. CWC15 binds the promoters of genes encoding miRNAs (MIRs), promotes their activity, and increases the occupancy of DNA-dependent RNA polymerases at MIR promoters, suggesting that CWC15 positively regulates the transcription of primary miRNA transcripts (pri-miRNAs). In addition, CWC15 interacts with Serrate (SE) and HYL1, two key components of microprocessor, and is required for efficient pri-miRNA processing and the HYL1-pri-miRNA interaction. Moreover, CWC15 interacts with the 20 S proteasome and PRP4KA, facilitating SE phosphorylation by PRP4KA, and subsequent non-functional SE degradation by the 20 S proteasome. These data reveal that CWC15 ensures optimal miRNA biogenesis by maintaining proper SE levels and by modulating pri-miRNA levels. Taken together, this study uncovers the role of a conserved splicing-related protein in miRNA biogenesis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Arabidopsis/genética , Arabidopsis/metabolismo , Empalmosomas/genética , Empalmosomas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Procesamiento Postranscripcional del ARN , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , MicroARNs/metabolismo , Regulación de la Expresión Génica de las Plantas
16.
Brain Res Bull ; 209: 110909, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38402994

RESUMEN

BACKGROUND: The efficacy of acupuncture at Zusanli (ST36) in alleviating lower-limb pain is widely acknowledged in clinical practice, while its underlying mechanism remains incompletely elucidated. Our previous research had revealed that the prompt analgesia induced by needling-ST36 was accompanied by expression alterations in certain exco-nucleotidases within the sciatic nerve. Building upon this finding, the current work focused on NTPDase1, the primary ecto-nucleotidase in the human body, which converts ATP into AMP. METHODS: A 20-min acupuncture was administered unilaterally at the ST36 on rats with acute ankle arthritis. The pain thresholds of the injured hind paws were determined. Pharmacological interference was carried out by introducing the corresponding reagents to the sciatic nerve. ATP levels around the excised nerve were measured using a luciferase-luciferin assay. Live calcium imaging, utilizing the Fura 2-related-F340/F380 ratio, was conducted on Schwann cells in excised nerves and cultured rat SCs line, RSC96 cells. RESULTS: The analgesic effect induced by needling-ST36 was impaired when preventing ATP degradation via inhibiting NTPDase1 activities with ARL67156 or Ticlopidine. Conversely, increasing NTPDase1 activities with Apyrase duplicated the acupuncture effect. Similarly, preventing the conversion of AMP to adenosine via suppression of NT5E with AMP-CP hindered the acupuncture effect. Unexpectedly, impeded ATP hydrolysis ability and diminished NTPDase1 expression were observed in the treated group. Agonism at P2Y2Rs with ATP, UTP, or INS365 resulted in anti-nociception. Contrarily, antagonism at P2Y2Rs with Suramin or AR-C 118925xx prevented acupuncture analgesia. Immunofluorescent labeling demonstrated that the treated rats expressed more P2Y2Rs that were predominant in Schwann cells. Suppression of Schwann cells by inhibiting ErbB receptors also prevented acupuncture analgesia. Finally, living imaging on the excised nerves or RSC96 cells showed that agonism at P2Y2Rs indeed led to [Ca2+]i rise. CONCLUSION: These findings strongly suggest that the analgesic mechanism of needling-ST36 on the hypersensation in the lower limb partially relies on NTPDase1 activities in the sciatic nerve. In addition to facilitating adenosine signaling in conjunction with NT5E, most importantly, NTPDase1 may provide an appropriate low-level ATP milieu for the activation of P2Y2R in the sciatic nerve, particularly in Schwann cells.


Asunto(s)
Analgesia por Acupuntura , Terapia por Acupuntura , Antígenos CD , Artritis , Ratas , Humanos , Animales , Apirasa , Tobillo , Dolor , Nervio Ciático/metabolismo , Adenosina Trifosfato/metabolismo , Analgésicos , Adenosina Monofosfato , Adenosina , Puntos de Acupuntura
17.
Food Chem X ; 21: 101236, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38406763

RESUMEN

Despite the favorable biocompatibility of natural antimicrobial peptides (AMPs), their scarcity limits their practical application. Through rational design, the activity of AMPs can be enhanced to expand their application. In this study, we selected a natural sturgeon epidermal mucus peptide, AP-16 (APATPAAPALLPLWLL), as the model molecule and studied its conformational regulation and antimicrobial activity through amino acid substitutions and N-terminal lipidation. The structural and morphological transitions of the peptide self-assemblies were investigated using circular dichroism and transmission electron microscopy. Following amino acid substitution, the conformation of AL-16 (AKATKAAKALLKLWLL) did not change. Following N-terminal alkylation, the C8-AL-16 and C12-AL-16 conformations changed from random coil to ß-sheet or α-helix, and the self-assembly changed from nanofibers to nanospheres. AL-16, C8-AL-16, and C8-AL-16 presented significant antimicrobial activity against Pseudomonas and Shewanella at low concentrations. N-terminal alkylation effectively extended the shelf life of Litopenaeus vannamei. These results support the application of natural AMPs.

19.
Yi Chuan ; 46(1): 3-17, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38230453

RESUMEN

As an intraspecific outcrossing mechanism, self-incompatibility (SI) widely adopted by hermaphroditic plants is usually controlled by a polymorphic multi-allelic S locus. Typically, six molecular types of SI have been found, including type-I controlled by the pistil S S-RNase and pollen S SLFs commonly spread in Plantaginaceae, Solanaceae, Rosaceae and Rutaceae, type-II by SRK and SCR in Brassicaceae, type-III by PrsS and PrpS in Papaveraceae, type-IV by CYP-GLO2-KFB-CCM-PUM in Primulaceae, type-V by TsSPH1-TsYUC6-TsBAHD in Turneraceae and type-VI by HPS10-S and DUF247I-S in Poaceae, with type-I characterized as a non-self recognition system but types-II, -III and -VI self ones. Furthermore, remarkable progresses have been made in their origin and evolutionary mechanisms recently. Among them, type-I SI possessed a single origin in the most recent common ancestor of eudicots and types II-V dynamically evolved following its losses, while type-VI SI exclusively existed in monocot Poaceae may be regained after the loss of the ancient type-I. Here, we mainly review the molecular and evolutionary mechanisms of angiosperm SI systems, thus providing a helpful reference for their theoretical research and breeding application.


Asunto(s)
Magnoliopsida , Autoincompatibilidad en las Plantas con Flores , Magnoliopsida/genética , Autoincompatibilidad en las Plantas con Flores/genética , Fitomejoramiento , Evolución Biológica , Polen , Proteínas de Plantas/genética
20.
Int J Biol Macromol ; 254(Pt 1): 127725, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38287585

RESUMEN

Resistant starch (RS) has been extensively studied because of its beneficial effects on gut microbiota. In this study, four RSs obtained through various preparation processes were utilized for in vitro fermentation, and their structural characteristics before and after fermentation were determined using chromatography, Fourier infrared spectroscopy, and scanning electron microscopy (SEM). It was observed that these RSs can be classified into two categories based on their fermentation and structural features. The autoclaving RS (ARS) and extruding RS (ERS) were classified as Class I Microbiome Community (MC-I), characterized by a higher proportion of butyrate and its producers, including unclassified_g_Megasphaera and Megasphaera elsdenii. While microwaving RS (MRS) and ultrasound RS (URS) belonged to Class II Microbiome Community (MC-II), marked by a higher proportion of acetate and its producer, Bifidobacterium pseudocatenulatum DSM 20438. MC-I had a lower molecular weight, shorter chain length, more chains with degree of polymerization (DP) 36-100, and a more ordered structure than MC-II. Furthermore, SEM observations revealed distinct degradation patterns between MC-I and MC-II, which may be attributed to their surface structural characteristics. These findings imply that the preparation methods employed for RS can determine its multilevel structural characteristics, and consequently influence its physiological properties.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Fermentación , Almidón Resistente/metabolismo , Almidón/química , Heces/microbiología , Ácidos Grasos Volátiles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA