Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Sci Immunol ; 6(65): eabe3981, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34826259

RESUMEN

Helios, a member of the Ikaros family of transcription factors, is predominantly expressed in developing thymocytes, activated T cells, and regulatory T cells (Tregs). Studies in mice have emphasized its role in maintenance of Treg immunosuppressive functions by stabilizing Foxp3 expression and silencing the Il2 locus. However, its contribution to human immune homeostasis and the precise mechanisms by which Helios regulates other T cell subsets remain unresolved. Here, we investigated a patient with recurrent respiratory infections and hypogammaglobulinemia and identified a germline homozygous missense mutation in IKZF2 encoding Helios (p.Ile325Val). We found that HeliosI325V retains DNA binding and dimerization properties but loses interaction with several partners, including epigenetic remodelers. Whereas patient Tregs showed increased IL-2 production, patient conventional T cells had decreased accessibility of the IL2 locus and consequently reduced IL-2 production. Reduced chromatin accessibility was not exclusive to the IL2 locus but involved a variety of genes associated with T cell activation. Single-cell RNA sequencing of peripheral blood mononuclear cells revealed gene expression signatures indicative of a shift toward a proinflammatory, effector-like status in patient CD8+ T cells. Moreover, patient CD4+ T cells exhibited a pronounced defect in proliferation with delayed expression of surface checkpoint inhibitors, suggesting an impaired onset of the T cell activation program. Collectively, we identified a previously uncharacterized, germline-encoded inborn error of immunity and uncovered a cell-specific defect in Helios-dependent epigenetic regulation. Binding of Helios with specific partners mediates this regulation, which is ultimately necessary for the transcriptional programs that enable T cell homeostasis in health and disease.


Asunto(s)
Células Germinativas/inmunología , Factor de Transcripción Ikaros/inmunología , Adolescente , Epigénesis Genética/genética , Epigénesis Genética/inmunología , Humanos , Factor de Transcripción Ikaros/genética , Interleucina-2/biosíntesis , Masculino , Mutación Missense , Linfocitos T Reguladores/inmunología
2.
Blood ; 137(15): 2033-2045, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33513601

RESUMEN

Exocytosis of cytotoxic granules (CG) by lymphocytes is required for the elimination of infected and malignant cells. Impairments in this process underly a group of diseases with dramatic hyperferritinemic inflammation termed hemophagocytic lymphohistiocytosis (HLH). Although genetic and functional studies of HLH have identified proteins controlling distinct steps of CG exocytosis, the molecular mechanisms that spatiotemporally coordinate CG release remain partially elusive. We studied a patient exhibiting characteristic clinical features of HLH associated with markedly impaired cytotoxic T lymphocyte (CTL) and natural killer (NK) cell exocytosis functions, who beared biallelic deleterious mutations in the gene encoding the small GTPase RhoG. Experimental ablation of RHOG in a model cell line and primary CTLs from healthy individuals uncovered a hitherto unappreciated role of RhoG in retaining CGs in the vicinity of the plasma membrane (PM), a fundamental prerequisite for CG exocytotic release. We discovered that RhoG engages in a protein-protein interaction with Munc13-4, an exocytosis protein essential for CG fusion with the PM. We show that this interaction is critical for docking of Munc13-4+ CGs to the PM and subsequent membrane fusion and release of CG content. Thus, our study illuminates RhoG as a novel essential regulator of human lymphocyte cytotoxicity and provides the molecular pathomechanism behind the identified here and previously unreported genetically determined form of HLH.


Asunto(s)
Células Asesinas Naturales/patología , Linfohistiocitosis Hemofagocítica/genética , Linfocitos T Citotóxicos/patología , Proteínas de Unión al GTP rho/genética , Línea Celular , Células Cultivadas , Eliminación de Gen , Mutación de Línea Germinal , Humanos , Lactante , Células Asesinas Naturales/metabolismo , Linfohistiocitosis Hemofagocítica/patología , Masculino , Modelos Moleculares , Linfocitos T Citotóxicos/metabolismo , Proteínas de Unión al GTP rho/química
3.
Nat Commun ; 10(1): 3106, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31308374

RESUMEN

Immune responses need to be controlled tightly to prevent autoimmune diseases, yet underlying molecular mechanisms remain partially understood. Here, we identify biallelic mutations in three patients from two unrelated families in differentially expressed in FDCP6 homolog (DEF6) as the molecular cause of an inborn error of immunity with systemic autoimmunity. Patient T cells exhibit impaired regulation of CTLA-4 surface trafficking associated with reduced functional CTLA-4 availability, which is replicated in DEF6-knockout Jurkat cells. Mechanistically, we identify the small GTPase RAB11 as an interactor of the guanine nucleotide exchange factor DEF6, and find disrupted binding of mutant DEF6 to RAB11 as well as reduced RAB11+CTLA-4+ vesicles in DEF6-mutated cells. One of the patients has been treated with CTLA-4-Ig and achieved sustained remission. Collectively, we uncover DEF6 as player in immune homeostasis ensuring availability of the checkpoint protein CTLA-4 at T-cell surface, identifying a potential target for autoimmune and/or cancer therapy.


Asunto(s)
Antígeno CTLA-4/metabolismo , Proteínas de Unión al ADN/deficiencia , Factores de Intercambio de Guanina Nucleótido/deficiencia , Enfermedades de Inmunodeficiencia Primaria/genética , Antígeno B7-1/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/inmunología , Técnicas de Inactivación de Genes , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/inmunología , Homeostasis , Humanos , Células Jurkat , Linfocitos T/metabolismo , Linfocitos T/fisiología , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA