RESUMEN
Sheep was one of the first domesticated animals in Neolithic West Eurasia. The zooarchaeological record suggests that domestication first took place in Southwest Asia, although much remains unresolved about the precise location(s) and timing(s) of earliest domestication, or the post-domestication history of sheep. Here, we present 24 new partial sheep paleogenomes, including a 13,000-year-old Epipaleolithic Central Anatolian wild sheep, as well as 14 domestic sheep from Neolithic Anatolia, two from Neolithic Iran, two from Neolithic Iberia, three from Neolithic France, and one each from Late Neolithic/Bronze Age Baltic and South Russia, in addition to five present-day Central Anatolian Mouflons and two present-day Cyprian Mouflons. We find that Neolithic European, as well as domestic sheep breeds, are genetically closer to the Anatolian Epipaleolithic sheep and the present-day Anatolian and Cyprian Mouflon than to the Iranian Mouflon. This supports a Central Anatolian source for domestication, presenting strong evidence for a domestication event in SW Asia outside the Fertile Crescent, although we cannot rule out multiple domestication events also within the Neolithic Fertile Crescent. We further find evidence for multiple admixture and replacement events, including one that parallels the Pontic Steppe-related ancestry expansion in Europe, as well as a post-Bronze Age event that appears to have further spread Asia-related alleles across global sheep breeds. Our findings mark the dynamism of past domestic sheep populations in their potential for dispersal and admixture, sometimes being paralleled by their shepherds and in other cases not.
Asunto(s)
Domesticación , Oveja Doméstica , Animales , Oveja Doméstica/genética , Ovinos/genética , Genoma , ADN Antiguo/análisis , Europa (Continente)RESUMEN
We present palaeogenomes of three morphologically unidentified Anatolian equids dating to the first millennium BCE, sequenced to a coverage of 0.6-6.4×. Mitochondrial DNA haplotypes of the Anatolian individuals clustered with those of Equus hydruntinus (or Equus hemionus hydruntinus), the extinct European wild ass, secular name 'hydruntine'. Further, the Anatolian wild ass whole genome profiles fell outside the genomic diversity of other extant and past Asiatic wild ass (E. hemionus) lineages. These observations suggest that the three Anatolian wild asses represent hydruntines, making them the latest recorded survivors of this lineage, about a millennium later than the latest observations in the zooarchaeological record. Our mitogenomic and genomic analyses indicate that E. h. hydruntinus was a clade belonging to ancient and present-day E. hemionus lineages that radiated possibly between 0.6 and 0.8 Mya. We also find evidence consistent with recent gene flow between hydruntines and Middle Eastern wild asses. Analyses of genome-wide heterozygosity and runs of homozygosity suggest that the Anatolian wild ass population may have lost genetic diversity by the mid-first millennium BCE, a possible sign of its eventual demise.
Asunto(s)
ADN Mitocondrial , Flujo Génico , Haplotipos , Filogenia , Animales , ADN Mitocondrial/genética , Haplotipos/genética , Equidae/genética , Genoma Mitocondrial , Extinción Biológica , Fósiles , Genética de Población , Variación GenéticaRESUMEN
Once widespread in their homelands, the Anatolian mouflon (Ovis gmelini anatolica) and the Cyprian mouflon (Ovis gmelini ophion) were driven to near extinction during the 20th century and are currently listed as endangered populations by the International Union for Conservation of Nature. While the exact origins of these lineages remain unclear, they have been suggested to be close relatives of domestic sheep or remnants of proto-domestic sheep. Here, we study whole genome sequences of n = 5 Anatolian mouflons and n = 10 Cyprian mouflons in terms of population history and diversity, comparing them with eight other extant sheep lineages. We find reciprocal genetic affinity between Anatolian and Cyprian mouflons and domestic sheep, higher than all other studied wild sheep genomes, including the Iranian mouflon (O. gmelini). Studying diversity indices, we detect a considerable load of short runs of homozygosity blocks (<2â Mb) in both Anatolian and Cyprian mouflons, reflecting small effective population size (Ne). Meanwhile, Ne and mutation load estimates are lower in Cyprian compared with Anatolian mouflons, suggesting the purging of recessive deleterious variants in Cyprian sheep under a small long-term Ne, possibly attributable to founder effects, island isolation, introgression from domestic lineages, or differences in their bottleneck dynamics. Expanding our analyses to worldwide wild and feral Ovis genomes, we observe varying viability metrics among different lineages and a limited consistency between viability metrics and International Union for Conservation of Nature conservation status. Factors such as recent inbreeding, introgression, and unique population dynamics may have contributed to the observed disparities.
Asunto(s)
Especies en Peligro de Extinción , Oveja Doméstica , Animales , Ovinos/genética , Oveja Doméstica/genética , Genoma , Variación GenéticaRESUMEN
Although a broad range of methods exists for reconstructing population history from genome-wide single nucleotide polymorphism data, just a few methods gained popularity in archaeogenetics: principal component analysis (PCA); ADMIXTURE, an algorithm that models individuals as mixtures of multiple ancestral sources represented by actual or inferred populations; formal tests for admixture such as f3-statistics and D/f4-statistics; and qpAdm, a tool for fitting two-component and more complex admixture models to groups or individuals. Despite their popularity in archaeogenetics, which is explained by modest computational requirements and ability to analyze data of various types and qualities, protocols relying on qpAdm that screen numerous alternative models of varying complexity and find "fitting" models (often considering both estimated admixture proportions and p-values as a composite criterion of model fit) remain untested on complex simulated population histories in the form of admixture graphs of random topology. We analyzed genotype data extracted from such simulations and tested various types of high-throughput qpAdm protocols ("rotating" and "non-rotating", with or without temporal stratification of target groups and proxy ancestry sources, and with or without a "model competition" step). We caution that high-throughput qpAdm protocols may be inappropriate for exploratory analyses in poorly studied regions/periods since their false discovery rates varied between 12% and 68% depending on the details of the protocol and on the amount and quality of simulated data (i.e., >12% of fitting two-way admixture models imply gene flows that were not simulated). We demonstrate that for reducing false discovery rates of qpAdm protocols to nearly 0% it is advisable to use large SNP sets with low missing data rates, the rotating qpAdm protocol with a strictly enforced rule that target groups do not pre-date their proxy sources, and an unsupervised ADMIXTURE analysis as a way to verify feasible qpAdm models. Our study has a number of limitations: for instance, these recommendations depend on the assumption that the underlying genetic history is a complex admixture graph and not a stepping-stone model.
RESUMEN
f-statistics have emerged as a first line of analysis for making inferences about demographic history from genome-wide data. Not only are they guaranteed to allow robust tests of the fits of proposed models of population history to data when analyzing full genome sequencing data-that is, all single nucleotide polymorphisms (SNPs) in the individuals being analyzed-but they are also guaranteed to allow robust tests of models for SNPs ascertained as polymorphic in a population that is an outgroup in a phylogenetic sense to all groups being analyzed. True "outgroup ascertainment" is in practice impossible in humans because our species has arisen from a substructured ancestral population that does not descend from a homogeneous ancestral population going back many hundreds of thousands of years into the past. However, initial studies suggested that non-outgroup-ascertainment schemes might produce robust enough results using f-statistics, and that motivated widespread fitting of models to data using non-outgroup-ascertained SNP panels such as the "Affymetrix Human Origins array" which has been genotyped on thousands of modern individuals from hundreds of populations, or the "1240k" in-solution enrichment reagent which has been the source of about 70% of published genome-wide data for ancient humans. In this study, we show that while analyses of population history using such panels work well for studies of relationships among non-African populations and one African outgroup, when co-modeling more than one sub-Saharan African and/or archaic human groups (Neanderthals and Denisovans), fitting of f-statistics to such SNP sets is expected to frequently lead to false rejection of true demographic histories, and failure to reject incorrect models. Analyzing panels of SNPs polymorphic in archaic humans, which has been suggested as a solution for the ascertainment problem, has limited statistical power and retains important biases. However, by carrying out simulations of diverse demographic histories, we show that bias in inferences based on f-statistics can be minimized by ascertaining on variants common in a union of diverse African groups; such ascertainment retains high statistical power while allowing co-analysis of archaic and modern groups.
Asunto(s)
Pueblo Africano , Demografía , Filogenia , Polimorfismo de Nucleótido Simple , Animales , Humanos , Población Negra/genética , Mapeo Cromosómico , Genotipo , Hombre de Neandertal/genética , Polimorfismo de Nucleótido Simple/genética , Pueblo Africano/genética , Demografía/historia , Variación Biológica Poblacional/genética , Modelos Estadísticos , SesgoRESUMEN
f -statistics have emerged as a first line of analysis for making inferences about demographic history from genome-wide data. These statistics can provide strong evidence for either admixture or cladality, which can be robust to substantial rates of errors or missing data. f -statistics are guaranteed to be unbiased under "SNP ascertainment" (analyzing non-randomly chosen subsets of single nucleotide polymorphisms) only if it relies on a population that is an outgroup for all groups analyzed. However, ascertainment on a true outgroup that is not co-analyzed with other populations is often impractical and uncommon in the literature. In this study focused on practical rather than theoretical aspects of SNP ascertainment, we show that many non-outgroup ascertainment schemes lead to false rejection of true demographic histories, as well as to failure to reject incorrect models. But the bias introduced by common ascertainments such as the 1240K panel is mostly limited to situations when more than one sub-Saharan African and/or archaic human groups (Neanderthals and Denisovans) or non-human outgroups are co-modelled, for example, f 4 -statistics involving one non-African group, two African groups, and one archaic group. Analyzing panels of SNPs polymorphic in archaic humans, which has been suggested as a solution for the ascertainment problem, cannot fix all these problems since for some classes of f -statistics it is not a clean outgroup ascertainment, and in other cases it demonstrates relatively low power to reject incorrect demographic models since it provides a relatively small number of variants common in anatomically modern humans. And due to the paucity of high-coverage archaic genomes, archaic individuals used for ascertainment often act as sole representatives of the respective groups in an analysis, and we show that this approach is highly problematic. By carrying out large numbers of simulations of diverse demographic histories, we find that bias in inferences based on f -statistics introduced by non-outgroup ascertainment can be minimized if the derived allele frequency spectrum in the population used for ascertainment approaches the spectrum that existed at the root of all groups being co-analyzed. Ascertaining on sites with variants common in a diverse group of African individuals provides a good approximation to such a set of SNPs, addressing the great majority of biases and also retaining high statistical power for studying population history. Such a "pan-African" ascertainment, although not completely problem-free, allows unbiased exploration of demographic models for the widest set of archaic and modern human populations, as compared to the other ascertainment schemes we explored.
RESUMEN
We present a spatiotemporal picture of human genetic diversity in Anatolia, Iran, Levant, South Caucasus, and the Aegean, a broad region that experienced the earliest Neolithic transition and the emergence of complex hierarchical societies. Combining 35 new ancient shotgun genomes with 382 ancient and 23 present-day published genomes, we found that genetic diversity within each region steadily increased through the Holocene. We further observed that the inferred sources of gene flow shifted in time. In the first half of the Holocene, Southwest Asian and the East Mediterranean populations homogenized among themselves. Starting with the Bronze Age, however, regional populations diverged from each other, most likely driven by gene flow from external sources, which we term "the expanding mobility model." Interestingly, this increase in inter-regional divergence can be captured by outgroup-f3-based genetic distances, but not by the commonly used FST statistic, due to the sensitivity of FST, but not outgroup-f3, to within-population diversity. Finally, we report a temporal trend of increasing male bias in admixture events through the Holocene.
Asunto(s)
Genoma Humano , Grupos Raciales , Humanos , Masculino , Historia Antigua , Irán , Flujo Génico , Migración Humana , Genética de PoblaciónRESUMEN
The great ethnolinguistic diversity found today in mainland Southeast Asia (MSEA) reflects multiple migration waves of people in the past. Maritime trading between MSEA and India was established at the latest 300 BCE, and the formation of early states in Southeast Asia during the first millennium CE was strongly influenced by Indian culture, a cultural influence that is still prominent today. Several ancient Indian-influenced states were located in present-day Thailand, and various populations in the country are likely to be descendants of people from those states. To systematically explore Indian genetic heritage in MSEA populations, we generated genome-wide SNP data (using the Affymetrix Human Origins array) for 119 present-day individuals belonging to 10 ethnic groups from Thailand and co-analyzed them with published data using PCA, ADMIXTURE, and methods relying on f-statistics and on autosomal haplotypes. We found low levels of South Asian admixture in various MSEA populations for whom there is evidence of historical connections with the ancient Indian-influenced states but failed to find this genetic component in present-day hunter-gatherer groups and relatively isolated groups from the highlands of Northern Thailand. The results suggest that migration of Indian populations to MSEA may have been responsible for the spread of Indian culture in the region. Our results also support close genetic affinity between Kra-Dai-speaking (also known as Tai-Kadai) and Austronesian-speaking populations, which fits a linguistic hypothesis suggesting cladality of the two language families.
Asunto(s)
Pueblo Asiatico/genética , Etnicidad/genética , Asia Sudoriental/etnología , Variación Genética/genética , Genética de Población/métodos , Haplotipos/genética , Humanos , India/etnología , Lenguaje , Polimorfismo de Nucleótido Simple/genética , Tailandia/etnologíaRESUMEN
Sheep were among the first domesticated animals, but their demographic history is little understood. Here we analyzed nuclear polymorphism and mitochondrial data (mtDNA) from ancient central and west Anatolian sheep dating from Epipaleolithic to late Neolithic, comparatively with modern-day breeds and central Asian Neolithic/Bronze Age sheep (OBI). Analyzing ancient nuclear data, we found that Anatolian Neolithic sheep (ANS) are genetically closest to present-day European breeds relative to Asian breeds, a conclusion supported by mtDNA haplogroup frequencies. In contrast, OBI showed higher genetic affinity to present-day Asian breeds. These results suggest that the east-west genetic structure observed in present-day breeds had already emerged by 6000 BCE, hinting at multiple sheep domestication episodes or early wild introgression in southwest Asia. Furthermore, we found that ANS are genetically distinct from all modern breeds. Our results suggest that European and Anatolian domestic sheep gene pools have been strongly remolded since the Neolithic.
Asunto(s)
ADN Antiguo/análisis , ADN Mitocondrial/análisis , Domesticación , Polimorfismo Genético , Oveja Doméstica/genética , Animales , Arqueología , Núcleo Celular , Demografía , TurquíaRESUMEN
The genetic diversity of the Mediterranean swordfish (Xiphias gladius Linneus) has not been explored extensively at its easternmost range so far. In this study, modern X. gladius samples from the eastern part of the Mediterranean basin, north of the Aegean Sea (Aegean-2013, n = 26) and the Mediterranean coast of Turkey (N.Levantine-2013, n = 42) were studied genetically, along with ancient samples from Yenikapi excavation (n = 6). Partial mitochondrial DNA control region sequences (entire sequences, clade I and clade II) were evaluated spatially and temporally together with previously published sequences (Alvarado Bremer et al., Molecular Phylogenetics and Evolution, 2005, 36, 169-187; Viñas et al., ICES Journal of Marine Science, 2010, 67, 1222-1229; Righi et al., Diversity, 2020, 12, 170) from the rest of the Mediterranean Sea. Pair-wise FST and pair-wise AMOVA tests showed that, in general, groups of eastern populations and western Mediterranean populations have not genetically differed from each other significantly nearly in the past 20 years. Therefore, the results direct reconsideration of previous descriptions of population sub-structure within the Mediterranean and support high gene flow throughout the region. On the contrary, the results of this study confirmed the existence of genetic diversity differences between western and eastern Mediterranean, with eastern being low. One-tailed permutation tests revealed that θ, which is directly proportional to long-term female effective population size (Ne), decreased significantly (P < 0.05) in both regions over the past two decades. On the Turkish coasts, θ is not significantly different from that of the nearly contemporary eastern Mediterranean population. Nonetheless, θ of the ancient sample was consistently and significantly (P < 0.001) higher than those of the eastern and western Mediterranean populations in clade I and clade II. Furthermore, it contains two mitochondrial haplotypes that are not observed in modern samples, suggesting that the Ne of X. gladius in the eastern was high in Byzantium times. Eight microsatellite loci were also genotyped in modern samples. The microsatellite-based present Ne estimate of the pooled Aegean-2013 and N.Levantine-2013 populations was lower than 1000 according to the upper limit of 95% c.i. and possibly even lower than 100 according to the mean of posterior distribution of the present Ne estimate calculated by the software package MSVAR. These alarming genetic signals for the sustainability of X. gladius on the coasts of Turkey are in agreement with the nearly collapsing X. gladius fisheries as depicted also in the fisheries statistics. Overall, congruent with the previous studies, the data presented here show that sustainability of the X. gladius population in Mediterranean is under major threat. Therefore, X. gladius around the Turkish coasts need an immediate stringent action and management plan.
Asunto(s)
ADN Mitocondrial , Perciformes , Animales , ADN Mitocondrial/genética , Demografía , Femenino , Mar Mediterráneo , Repeticiones de Microsatélite , TurquíaRESUMEN
Archaeogenomic studies have largely elucidated human population history in West Eurasia during the Stone Age. However, despite being a broad geographical region of significant cultural and linguistic diversity, little is known about the population history in North Asia. We present complete mitochondrial genome sequences together with stable isotope data for 41 serially sampled ancient individuals from North Asia, dated between c.13,790 BP and c.1,380 BP extending from the Palaeolithic to the Iron Age. Analyses of mitochondrial DNA sequences and haplogroup data of these individuals revealed the highest genetic affinity to present-day North Asian populations of the same geographical region suggesting a possible long-term maternal genetic continuity in the region. We observed a decrease in genetic diversity over time and a reduction of maternal effective population size (Ne) approximately seven thousand years before present. Coalescent simulations were consistent with genetic continuity between present day individuals and individuals dating to 7,000 BP, 4,800 BP or 3,000 BP. Meanwhile, genetic differences observed between 7,000 BP and 3,000 BP as well as between 4,800 BP and 3,000 BP were inconsistent with genetic drift alone, suggesting gene flow into the region from distant gene pools or structure within the population. These results indicate that despite some level of continuity between ancient groups and present-day populations, the region exhibits a complex demographic history during the Holocene.
Asunto(s)
ADN Antiguo , ADN Mitocondrial/genética , Variación Genética , Genoma Microbiano , Asia del Norte , Femenino , Historia Antigua , Humanos , MasculinoRESUMEN
The archaeological documentation of the development of sedentary farming societies in Anatolia is not yet mirrored by a genetic understanding of the human populations involved, in contrast to the spread of farming in Europe [1-3]. Sedentary farming communities emerged in parts of the Fertile Crescent during the tenth millennium and early ninth millennium calibrated (cal) BC and had appeared in central Anatolia by 8300 cal BC [4]. Farming spread into west Anatolia by the early seventh millennium cal BC and quasi-synchronously into Europe, although the timing and process of this movement remain unclear. Using genome sequence data that we generated from nine central Anatolian Neolithic individuals, we studied the transition period from early Aceramic (Pre-Pottery) to the later Pottery Neolithic, when farming expanded west of the Fertile Crescent. We find that genetic diversity in the earliest farmers was conspicuously low, on a par with European foraging groups. With the advent of the Pottery Neolithic, genetic variation within societies reached levels later found in early European farmers. Our results confirm that the earliest Neolithic central Anatolians belonged to the same gene pool as the first Neolithic migrants spreading into Europe. Further, genetic affinities between later Anatolian farmers and fourth to third millennium BC Chalcolithic south Europeans suggest an additional wave of Anatolian migrants, after the initial Neolithic spread but before the Yamnaya-related migrations. We propose that the earliest farming societies demographically resembled foragers and that only after regional gene flow and rising heterogeneity did the farming population expansions into Europe occur.
Asunto(s)
Agricultura , Arqueología , Agricultores , Variación Genética , Humanos , TurquíaRESUMEN
In the present study, to contribute to the understanding of the evolutionary history of sheep, the mitochondrial (mt) DNA polymorphisms occurring in modern Turkish native domestic (nâ=â628), modern wild (Ovis gmelinii anatolica) (nâ=â30) and ancient domestic sheep from Oylum Höyük in Kilis (nâ=â33) were examined comparatively with the accumulated data in the literature. The lengths (75 bp/76 bp) of the second and subsequent repeat units of the mtDNA control region (CR) sequences differentiated the five haplogroups (HPGs) observed in the domestic sheep into two genetic clusters as was already implied by other mtDNA markers: the first cluster being composed of HPGs A, B, D and the second cluster harboring HPGs C, E. To manifest genetic relatedness between wild Ovis gmelinii and domestic sheep haplogroups, their partial cytochrome B sequences were examined together on a median-joining network. The two parallel but wider aforementioned clusters were observed also on the network of Ovis gmelenii individuals, within which domestic haplogroups were embedded. The Ovis gmelinii wilds of the present day appeared to be distributed on two partially overlapping geographic areas parallel to the genetic clusters that they belong to (the first cluster being in the western part of the overall distribution). Thus, the analyses suggested that the domestic sheep may be the products of two maternally distinct ancestral Ovis gmelinii populations. Furthermore, Ovis gmelinii anatolica individuals exhibited a haplotype of HPG A (nâ=â22) and another haplotype (nâ=â8) from the second cluster which was not observed among the modern domestic sheep. HPG E, with the newly observed members (nâ=â11), showed signs of expansion. Studies of ancient and modern mtDNA suggest that HPG C frequency increased in the Southeast Anatolia from 6% to 22% some time after the beginning of the Hellenistic period, 500 years Before Common Era (BCE).