Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Chem Commun (Camb) ; 60(13): 1707-1710, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38189085

RESUMEN

We report the step-by-step synthesis of a precious metal-free acceptor-chromophore-relay-catalyst tetrad assembly that exhibits a turnover frequency (TOF) of 7.5 × 10-3 s-1 under neutral conditions. Transient absorption spectroscopic studies indicate that upon fullerenol incorporation into the investigated complexes, charge separation efficiency increases considerably.

2.
J Phys Chem Lett ; 13(16): 3562-3570, 2022 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-35426302

RESUMEN

Carbon quantum dots (CDs) have recently received a tremendous amount of interest owing to their attractive optical properties. However, CDs have broad absorption and emission spectra limiting their application ranges. We herein, for the first time, show synthesis of water-soluble red emissive CDs with a very narrow line width (∼75 meV) spectral absorbance and hence demonstrate strong coupling of CDs and plasmon polaritons in liquid crystalline mesophases. The excited state dynamics of CDs has been studied by ultrafast transient absorption spectroscopy, and CDs display very stable and strong photoluminescence emission with a quantum yield of 35.4% and a lifetime of ∼2 ns. More importantly, we compare J-aggregate dyes with CDs in terms of their absorption line width, photostability, and ability to do strong coupling, and we conclude that highly fluorescent CDs have a bright future in the mixed light-matter states for emerging applications in future quantum technologies.

3.
Angew Chem Int Ed Engl ; 61(33): e202203758, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35384206

RESUMEN

We observed a long-lived charge transfer (CT) state in a novel orthogonal compact electron donor-acceptor dyads, with closed form of rhodamine (Rho) as electron donor and pyromellitimide (PI),or thionated PI, as electron acceptor. The two parts in the dyads are connected via a spiro quaternary carbon atom, thus the torsion between the donor and acceptor is completely inhibited, which is beneficial to reduce the reorganization energy and to exploit the Marcus inverted region effect to prolong the CT state lifetime. Femtosecond transient absorption spectra show that the charge separation is rather fast, while nanosecond transient absorption spectra confirmed the formation of long-lived CT state (2.6 µs). Time-resolved electron paramagnetic resonance (TREPR) spectra determined the spin multiplicity of the long living state and assigned it to a 3 CT state. Replacement of an oxygen atom in the PI part with a sulfur atom favoring classical intersystem crossing processes, causes a consistently shortening of the lifetime of the 3 CT state (0.29 µs).

4.
Chemphyschem ; 22(1): 55-68, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33197104

RESUMEN

A 4-amino-2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) radical was attached to the bay position of perylene-3,4 : 9,10-bis(dicarboximide) (perylenebisimide, PBI) to study the radical-enhanced intersystem crossing (REISC) and electron spin dynamics of the photo-induced high-spin states. The dyads give strong visible light absorption (ϵ=27000 M-1 cm-1 at 607 nm). Attaching a TEMPO radical to the PBI unit transforms the otherwise non-radiative decay of S1 state (fluorescence quantum yield: ΦF =2.9 %) of PBI unit to ISC (singlet oxygen quantum yield: ΦΔ =31.8 %, ΦF =1.6 %). Moreover, the REISC is more efficient as compared to the heavy atom effect-induced ISC (ΦΔ =17.8 % for 1,8-dibromoPBI). For the dyad, ISC takes 245 ps and triplet state lifetime is 1.5 µs, much shorter than the native PBI (τT =126.6 µs). X- and Q-band time-resolved electron paramagnetic resonance spectroscopy shows that the exchange interaction in the photoexcited radical-chromophore dyad is larger than the triplet zero-field splitting (ZFS) and the difference of Zeeman energies of the radical and chromophore. The inversion of electron spin polarization from emissive to absorptive was observed and attributed to the initial completion of the quartet state population and the subsequent depopulation processes induced by the zero-field splitting.

5.
Inorg Chem ; 59(20): 14731-14745, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-32864961

RESUMEN

Two anthryl platinum(II) N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-benzenediamine Schiff base complexes were synthesized, with the anthryl attached via its 9 position (Pt-9An) or 2 position (Pt-2An) to the platinum (Pt) Schiff base backbone. The complexes show unusually small Stokes shifts (0.23 eV), representing a very small energy loss for the photoexcitation/intersystem crossing process, which is beneficial for applications as triplet photosensitizers. Phosphorescence of the Pt(II) coordination framework (ΦP = 11.0%) is quenched in the anthryl-containing complexes (ΦP = 4.0%) and shows a biexponential decay (τP = 3.4 µs/87% and 18.2 µs/13%) compared to the single-exponential decay of the native Pt(II) Schiff base complex (τP = 3.7 µs). Femtosecond/nanosecond transient absorption spectroscopy suggests an equilibrium between triplet anthracene (3An) and triplet metal-to-ligand charge-transfer (3MLCT) states, with the dark 3An state slightly lower in energy (1.96 eV for Pt-9An and 1.90 eV for Pt-2An) than the emissive 3MLCT state (1.97 eV for Pt-9An and 1.91 eV for Pt-2An). Intramolecular triplet-triplet energy transfer (TTET) and reverse TTET take 4.8 ps/444 ps for Pt-9An and 55 ps/1.7 ns for Pt-2An, respectively. The triplet-state equilibrium extends the triplet-state lifetime of the complexes to 103 µs (Pt-2An) or 163 µs (Pt-9An), in comparison to the native Pt(II) complex, which shows a lifetime of 4.0 µs. The complexes were used for triplet-triplet-annihilation upconversion with perylene as the triplet acceptor. The upconversion quantum yield is up to 15%, and a large anti-Stokes shift (0.75 eV) is achieved by excitation into the singlet metal-to-ligand charge-transfer absorption band (589 nm) of the complexes (anti-Stokes shift is 0.92 eV with 9,10-diphenylanthracene as the acceptor).

6.
Chemistry ; 26(16): 3591-3599, 2020 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-31916322

RESUMEN

Intersystem crossing (ISC) was observed for naphthalimide (NI)-derived Tröger's base, and the ISC was confirmed to occur by a spin-orbital charge-transfer (SOCT) mechanism. Conventional electron donor/acceptor dyads showing SOCT-ISC have semirigid linkers. In contrast, the linker between the two chromophores in Tröger's base is rigid and torsion is completely inhibited, which is beneficial for efficient SOCT-ISC. Femtosecond transient absorption (TA) spectra demonstrated charge-separation and charge-recombination-induced ISC processes. Nanosecond TA spectroscopy confirmed the ISC, and the triplet state is long-lived (46 µs, room temperature). The ISC quantum yield is dependent on solvent polarity (8-41 %). The triplet state was studied by pulsed-laser-excited time-resolved EPR spectroscopy, and both the NI-localized triplet state and triplet charge-transfer state were observed, which is in good agreement with the spin-density analysis. The Tröger's base was confirmed to be a potent photodynamic therapy reagent with HeLa cells (EC50 =5.0 nm).


Asunto(s)
1-Naftilamina/análogos & derivados , Naftalimidas/química , Fotoquimioterapia , Quinolonas/química , Solventes/química , 1-Naftilamina/química , Espectroscopía de Resonancia por Spin del Electrón , Células HeLa , Humanos
7.
Chemistry ; 24(70): 18663-18675, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30325074

RESUMEN

A compact naphthalenediimide (NDI)-2,2,6,6-tetramethylpiperidinyloxy (TEMPO) dyad has been prepared with the aim of studying radical-enhanced intersystem crossing (EISC) and the formation of high spin states as well as electron spin polarization (ESP) dynamics. Compared with the previously reported radical-chromophore dyads, the present system shows a very high triplet state quantum yield (ΦT =74 %), a long-lived triplet state (τT =8.7 µs), fast EISC (1/kEISC =338 ps), and absorption in the red spectral region. Time-resolved electron paramagnetic resonance (TREPR) spectroscopy showed that, upon photoexcitation in fluid solution at room temperature, the D0 state of the TEMPO moiety produces strong emissive (E) polarization owing to the quenching of the excited singlet state of NDI by the radical moiety (electron exchange J>0). The emissive polarization then inverts into absorptive (A) polarization within about 3 µs, and then relaxes to a thermal equilibrium while quenching the triplet state of NDI. The formation and decay of the quartet state were also observed. The dyad was used as a three-spin triplet photosensitizer for triplet-triplet annihilation upconversion (quantum yield ΦUC =2.6 %). Remarkably, when encapsulated into liposomes, the red-light-absorbing dyad-liposomes show good biocompatibility and excellent photodynamic therapy efficiency (phototoxicity EC50 =3.22 µm), and therefore is a promising candidate for future less toxic and multifunctional photodynamic therapeutic reagents.


Asunto(s)
Óxidos N-Cíclicos/química , Imidas/química , Naftalenos/química , Fármacos Fotosensibilizantes/química , Supervivencia Celular/efectos de los fármacos , Técnicas Electroquímicas , Espectroscopía de Resonancia por Spin del Electrón , Células HeLa , Humanos , Luz , Liposomas/química , Liposomas/metabolismo , Microscopía Confocal , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Teoría Cuántica , Especies Reactivas de Oxígeno/metabolismo , Espectrometría de Fluorescencia , Termodinámica
8.
J Am Chem Soc ; 139(23): 7831-7842, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28524657

RESUMEN

A long-lived triplet excited state of the well-known fluorophore boron dipyrromethene (Bodipy) was observed for the first time via efficient radical-enhanced intersystem crossing (EISC). The triplet state has been obtained in two dyads in which the Bodipy unit is linked to a nitroxide radical, 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO), with two different length spacers. The photophysical properties were studied with steady-state and time-resolved transient optical spectroscopies and electron spin resonance (cw-ESR and TR-ESR). The fluorescence of Bodipy units is significantly quenched in the dyads, and the spin-polarized TEMPO signals were observed with TR-ESR, generated by a radical triplet pair mechanism. Efficient EISC (ΦT = 80%) was observed for the dyad with a shorter linker, and the triplet state lifetime of the Bodipy chromophore is exceptionally long (62 µs). The EISC takes 250 ps. Poor ISC was observed for the dyad with a longer linker. The efficient ISC and long-lived triplet excited state in this flexible system are in stark contrast to the previously studied rigid EISC systems. The EISC effect was employed for the first time to perform triplet-triplet annihilation (TTA) upconversion (quantum yield ΦUC = 6.7%).

9.
Inorg Chem ; 54(16): 7803-17, 2015 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-26230144

RESUMEN

Pt(II) dbbpy bisacetylide (dbbpy = 4,4'-di(tert-butyl)-2,2'-bipyridine) complex (Pt-1) with two different Bodipy ligands was prepared with the goal to attain broad-band visible light absorbing, efficient funneling of the photoexcitation energy (via resonance energy transfer, RET) to the energy acceptor and high triplet formation quantum yields. Construction of the above-mentioned molecular structural motif is challenging because two different arylacetylide ligands are incorporated in the complex; normally two homoleptic acetylide ligands were used for this kind of N(∧)N Pt(II) complexes. A reference complex with trans bis(tributylphosphine) Pt(II) bisacetylide protocol (Pt-4) was prepared for comparison of the photophysical properties. The two different Bodipy ligands in Pt-1 and Pt-4 constitute singlet/triplet energy donor/acceptor, as a result the harvested photoexcitation energy can be funneled to the triplet state confined on one of the two Bodipy ligands. The photophysical properties of the complexes were studied with steady state UV-vis absorption and luminescence spectroscopies, femto- and nanosecond transient absorption spectroscopies, cyclic voltammetry, as well as DFT/TDDFT calculations. Fluorescence/phosphorescence dual emission were observed for the complex. The ultrafast intramolecular singlet/triplet energy transfer in Pt-1 was confirmed by the transient absorption spectroscopy (kFRET = 2.6 × 10(11) s(-1), ΦFRET = 87.1%) followed by an intersystem crossing (kISC = 1.9 × 10(10) s(-1)), and the triplet state lifetime (τT) is 54.1 µs. The reference complex Pt-4 shows drastically different kinetics with kFRET = 6.9 × 10(10) s(-1), ΦFRET = 81.0%, kISC = 5.83 × 10(9) s(-1), and τT = 147.9 µs. Different singlet oxygen ((1)O2) quantum yields (ΦΔ = 75% and 70%) and triplet state quantum yields (ΦT = 91% and 69%, respectively) were observed for complexes Pt-1 and Pt-4.

10.
Inorg Chem ; 54(15): 7492-505, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26196211

RESUMEN

Broadband near-IR absorbing trans-bis(trialkylphosphine) Pt(II) bisacetylide binuclear complex (Pt-1) was prepared with boron-dipyrromethene (Bodipy) and styrylBodipy acetylide ligands. Pt-1 shows strong absorption bands at 731 and 503 nm. Singlet energy transfer (EnT) and efficient intersystem crossing of the central coordinated Bodipy ligand were proposed to be responsible for the efficient funneling of the excitation energy to the triplet-state manifold. Reference complexes containing only a single Bodipy ligand were prepared for comparison (with styrylBodipy ligand Pt-0 or Bodipy ligand Pt-2). The molecular structures were confirmed by single-crystal X-ray diffraction. The photophysical properties were studied with steady-state and time-resolved transient absorption spectroscopies, electrochemical characterization, and density functional theory/time-dependent density functional theory calculations. Dual fluorescence was observed for Pt-1. Singlet EnT in Pt-1 was proposed based on the fluorescence quenching/excitation spectra, and femtosecond transient absorption spectra (energy transfer rate constant kEnT = 2.2 × 10(10) s(-1)). With nanosecond transient absorption spectra, intramolecular triplet-state energy transfer in Pt-1 was proved. Gibbs free energy changes of charge separation indicate that the photoinduced intramolecular electron transfer in Pt-1 is thermodynamically prohibited. Intermolecular triplet transfer between Pt-2 and L-1 was studied with nanosecond transient absorption spectra; the EnT rate and energy transfer efficiency were determined as 3.6 × 10(4) s(-1) and 94.5%, respectively. The singlet oxygen ((1)O2) photosensitizing of Pt-1 was improved as compared to the complexes containing only a single visible-light-absorbing chromophore.

11.
J Org Chem ; 80(6): 3036-49, 2015 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-25710451

RESUMEN

2,6-diiodoBodipy-perylenebisimide (PBI) dyad and triad were prepared, with the iodoBodipy moiety as the singlet/triplet energy donor and the PBI moiety as the singlet/triplet energy acceptor. IodoBodipy undergoes intersystem crossing (ISC), but PBI is devoid of ISC, and a competition of intramolecular resonance energy transfer (RET) with ISC of the diiodoBodipy moiety is established. The photophysical properties of the compounds were studied with steady-state and femtosecond/nanosecond transient absorption and emission spectroscopy. RET and photoinduced electron transfer (PET) were confirmed. The production of the triplet state is high for the iodinated dyad and the triad (singlet oxygen quantum yield ΦΔ = 80%). The Gibbs free energy changes of the electron transfer (ΔGCS) and the energy level of the charge transfer state (CTS) were analyzed. With nanosecond transient absorption spectroscopy, we confirmed that the triplet state is localized on the PBI moiety in the iodinated dyad and the triad. An exceptionally long lived triplet excited state was observed (τT = 150 µs) for PBI. With the uniodinated reference dyad and triad, we demonstrated that the triplet state localized on the PBI moiety in the iodinated dyad and triad is not produced by charge recombination. These information are useful for the design and study of the fundamental photochemistry of multichromophore organic triplet photosensitizers.

12.
Chem Sci ; 6(7): 3724-3737, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29218142

RESUMEN

Supramolecular triplet photosensitizers based on hydrogen bonding-mediated molecular assemblies were prepared. Three thymine-containing visible light-harvesting Bodipy derivatives (B-1, B-2 and B-3, which show absorption at 505 nm, 630 nm and 593 nm, respectively) were used as H-bonding modules, and 1,6-diaminopyridine-appended C60 was used as the complementary hydrogen bonding module (C-1), in which the C60 part acts as a spin converter for triplet formation. Visible light-harvesting antennae with methylated thymine were prepared as references (B-1-Me, B-2-Me and B-3-Me), which are unable to form strong H-bonds with C-1. Triple H-bonds are formed between each Bodipy antenna (B-1, B-2 and B-3) and the C60 module (C-1). The photophysical properties of the H-bonding assemblies and the reference non-hydrogen bond-forming mixtures were studied using steady state UV/vis absorption spectroscopy, fluorescence emission spectroscopy, electrochemical characterization, and nanosecond transient absorption spectroscopy. Singlet energy transfer from the Bodipy antenna to the C60 module was confirmed by fluorescence quenching studies. The intersystem crossing of the latter produced the triplet excited state. The nanosecond transient absorption spectroscopy showed that the triplet state is either localized on the C60 module (for assembly B-1·C-1), or on the styryl-Bodipy antenna (for assemblies B-2·C-1 and B-3·C-1). Intra-assembly forward-backward (ping-pong) singlet/triplet energy transfer was proposed. In contrast to the H-bonding assemblies, slow triplet energy transfer was observed for the non-hydrogen bonding mixtures. As a proof of concept, these supramolecular assemblies were used as triplet photosensitizers for triplet-triplet annihilation upconversion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA