Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Exp Zool B Mol Dev Evol ; 340(1): 68-80, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35485990

RESUMEN

Eusociality has been commonly observed in distinct animal lineages. The reproductive division of labor is a particular feature, achieved by the coordination between fertile and sterile castes within the same nest. The sociogenomic approach in social hymenopteran insects indicates that vitellogenin (Vg) has undergone neo-functionalization in sterile castes. Here, to know whether Vgs have distinct roles in nonreproductive castes in termites, we investigated the unique characteristics of Vgs in the rhinotermitid termite Reticulitermes speratus. The four Vgs were identified from R. speratus (RsVg1-4), and RsVg3 sequences were newly identified using the RACE method. Molecular phylogenetic analysis supported the monophyly of the four termite Vgs. Moreover, the termites Vg1-3 and Vg4 were positioned in two different clades. The  dN/dS ratios indicated that the branch leading to the common ancestor of termite Vg4 was under weak purifying selection. Expression analyses among castes (reproductives, workers, and soldiers) and females (nymphs, winged alates, and queens) showed that RsVg1-3 was highly expressed in fertile queens. In contrast, RsVg4 was highly expressed in workers and female nonreproductives (nymphs and winged adults). Localization of RsVg4 messenger RNA was confirmed in the fat body of worker heads and abdomens. These results suggest that Vg genes are functionalized after gene duplication during termite eusocial transition and that Vg4 is involved in nonreproductive roles in termites.


Asunto(s)
Isópteros , Femenino , Animales , Isópteros/genética , Isópteros/metabolismo , Vitelogeninas/genética , Vitelogeninas/metabolismo , Filogenia , Ninfa , Reproducción
2.
Zoolog Sci ; 39(6): 570-580, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36495492

RESUMEN

Synchronous spawning is a striking feature of coral. Although it is important for reproductive success, corals reallocate energy for reproduction to growth when they are damaged by external stimuli. To assess the transcriptome before and after spawning in the scleractinian coral Acropora tenuis, we tagged three colonies (one bleached and two unbleached) in the field around Sesoko Island (Okinawa, Japan) in November 2016, sampled them monthly from May to July 2017, and performed RNA sequencing (RNA-Seq) analysis. Histological analysis revealed that the previously bleached colony possessed gametes in June, by which time the other two colonies had already spawned. In RNA-Seq analyses, multi-dimensional scaling based on gene expression similarity among the samples reflected the differences between colonies and between months except for the sample of a non-spawned colony in May, which was similar to the samples in June. The similarity of the non-spawned colony sample in May to the samples in June was also shown in hierarchical clustering based on the expression patterns of the genes that were differentially expressed between months in the spawned colonies. These results suggest that non-spawning was already decided in May, and that the physiological condition in a non-spawned colony in May was advanced to June. RNA-Seq analysis also showed that genes related to gametogenesis and those related to apoptosis were upregulated before and after spawning, respectively.


Asunto(s)
Antozoos , Animales , Antozoos/genética , Estaciones del Año , Gametogénesis/genética , Reproducción/fisiología , Perfilación de la Expresión Génica
3.
Sci Rep ; 12(1): 19989, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36411327

RESUMEN

Cost-effective genotyping can be achieved by sequencing PCR amplicons. Short 3-10 base primers can arbitrarily amplify thousands of loci using only a few primers. To improve the sequencing efficiency of the multiple arbitrary amplicon sequencing (MAAS) approach, we designed new primers and examined their efficiency in sequencing and genotyping. To demonstrate the effectiveness of our method, we applied it to examining the population structure of the small freshwater fish, medaka (Oryzias latipes). We obtained 2987 informative SNVs with no missing genotype calls for 67 individuals from 15 wild populations and three artificial strains. The estimated phylogenic and population genetic structures of the wild populations were consistent with previous studies, corroborating the accuracy of our genotyping method. We also attempted to reconstruct the genetic backgrounds of a commercial orange mutant strain, Himedaka, which has caused a genetic disturbance in wild populations. Our admixture analysis focusing on Himedaka showed that at least two wild populations had genetically been contributed to the nuclear genome of this mutant strain. Our genotyping methods and results will be useful in quantitative assessments of genetic disturbance by this commercially available strain.


Asunto(s)
Oryzias , Animales , Oryzias/genética , Técnicas de Genotipaje , Cartilla de ADN , Genotipo , Reacción en Cadena de la Polimerasa
4.
Sci Rep ; 12(1): 11947, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35831400

RESUMEN

Termite castes express specialized phenotypes for their own tasks and are a good example of insect polyphenism. To understand the comprehensive gene expression profiles during caste differentiation, RNA-seq analysis based on the genome data was performed during the worker, presoldier, and nymphoid molts in Reticulitermes speratus. In this species, artificial induction methods for each molt have already been established, and the time scale has been clarified. Three different periods (before the gut purge (GP), during the GP, and after the molt) were discriminated in each molt, and two body parts (head and other body regions) were separately sampled. The results revealed that many differentially expressed genes (head: 2884, body: 2579) were identified in each molt. Based on the independent real-time quantitative PCR analysis, we confirmed the different expression patterns of seven out of eight genes in the presoldier molt. Based on the GO and KEGG enrichment analyses, the expressions of genes related to juvenile hormone titer changes (e.g., JH acid methyltransferase), nutrition status (e.g., Acyl-CoA Delta desaturase), and cell proliferation (e.g., insulin receptor), were shown to specifically fluctuate in each molt. These differences may have a crucial impact on caste differentiation. These data are important resources for future termite sociogenomics.


Asunto(s)
Isópteros , Animales , Isópteros/genética , Isópteros/metabolismo , Hormonas Juveniles/metabolismo , Muda , Transcriptoma
5.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35042774

RESUMEN

Termites are model social organisms characterized by a polyphenic caste system. Subterranean termites (Rhinotermitidae) are ecologically and economically important species, including acting as destructive pests. Rhinotermitidae occupies an important evolutionary position within the clade representing a transitional taxon between the higher (Termitidae) and lower (other families) termites. Here, we report the genome, transcriptome, and methylome of the Japanese subterranean termite Reticulitermes speratus Our analyses highlight the significance of gene duplication in social evolution in this termite. Gene duplication associated with caste-biased gene expression was prevalent in the R. speratus genome. The duplicated genes comprised diverse categories related to social functions, including lipocalins (chemical communication), cellulases (wood digestion and social interaction), lysozymes (social immunity), geranylgeranyl diphosphate synthase (social defense), and a novel class of termite lineage-specific genes with unknown functions. Paralogous genes were often observed in tandem in the genome, but their expression patterns were highly variable, exhibiting caste biases. Some of the assayed duplicated genes were expressed in caste-specific organs, such as the accessory glands of the queen ovary and the frontal glands of soldier heads. We propose that gene duplication facilitates social evolution through regulatory diversification, leading to caste-biased expression and subfunctionalization and/or neofunctionalization conferring caste-specialized functions.


Asunto(s)
Genómica , Proteínas de Insectos/metabolismo , Isópteros/fisiología , Evolución Social , Transcriptoma , Animales , Evolución Biológica , Celulasas/metabolismo , Femenino , Duplicación de Gen , Expresión Génica , Perfilación de la Expresión Génica , Proteínas de Insectos/genética , Isópteros/genética
6.
Mol Ecol ; 30(24): 6743-6758, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34543485

RESUMEN

Subsocial Cryptocercus cockroaches are the sister group to termites and considered to be socially monogamous. Because genetic monogamy is a suggested requirement for evolution of cooperative breeding/eusociality, particularly in hymenopterans, clarification of the mating biology of Cryptocercus would help illuminate evolutionary trends in eusocial insects. To investigate possible extra-pair paternity in C. punctulatus, microsatellite markers were used to analyse offspring parentage, the stored sperm in females and results of experimental manipulation of sperm competition. Extra-pair paternity was common in field-collected families, but a lack of maternal alleles in several nymphs suggests sampling error or adoption. Isolating prereproductive pairs and assaying subsequently produced nymphs confirmed that nymphs lacked alleles from the pair male in 40% of families, with extra-pair male(s) siring 27%-77% of nymphs. Sperm of extra-pair males was detected in the spermatheca of 51% of paired prereproductive females. Mate switching and surgical manipulation of male mating ability indicated a tendency towards last male sperm precedence. Overall, the results demonstrate that about half of young females are serially monogamous during their maturational year, but bond, overwinter and produce their only set of offspring in company of the last mated male (=pair male). Repeated mating by the pair male increases the number of nymphs sired, but because many females use stored sperm of previous copulatory partners to fertilize eggs, pair males extend parental care to unrelated nymphs. The results suggest that genetic monogamy either developed in the termite ancestor after splitting from the Cryptocercus lineage, or that genetic monogamy may not be a strict prerequisite for the evolution of termite eusociality.


Asunto(s)
Cucarachas , Paternidad , Animales , Cucarachas/genética , Copulación , Humanos , Conducta Sexual Animal , Madera
7.
Biol Lett ; 17(8): 20210212, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34343438

RESUMEN

The Indian subcontinent has an origin geologically different from Eurasia, but many terrestrial animal and plant species on it have congeneric or sister species in other parts of Asia, especially in the Southeast. This faunal and floral similarity between India and Southeast Asia is explained by either of the two biogeographic scenarios, 'into-India' or 'out-of-India'. Phylogenies based on complete mitochondrial genomes and five nuclear genes were undertaken for ricefishes (Adrianichthyidae) to examine which of these two biogeographic scenarios fits better. We found that Oryzias setnai, the only adrianichthyid distributed in and endemic to the Western Ghats, a mountain range running parallel to the western coast of the Indian subcontinent, is sister to all other adrianichthyids from eastern India and Southeast-East Asia. Divergence time estimates and ancestral area reconstructions reveal that this western Indian species diverged in the late Mesozoic during the northward drift of the Indian subcontinent. These findings indicate that adrianichthyids dispersed eastward 'out-of-India' after the collision of the Indian subcontinent with Eurasia, and subsequently diversified in Southeast-East Asia. A review of geographic distributions of 'out-of-India' taxa reveals that they may have largely fuelled or modified the biodiversity of Eurasia.


Asunto(s)
Oryzias , Animales , Asia Sudoriental , Biodiversidad , India , Filogenia
8.
Appl Environ Microbiol ; 87(21): e0114421, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34406826

RESUMEN

Certain Aspergillus and Penicillium spp. produce the fungal cell wall component nigeran, an unbranched d-glucan with alternating α-1,3- and α-1,4-glucoside linkages, under nitrogen starvation. The mechanism underlying nigeran biosynthesis and the physiological role of nigeran in fungal survival are not clear. We used RNA sequencing (RNA-seq) to identify genes involved in nigeran synthesis in the filamentous fungus Aspergillus luchuensis when grown under nitrogen-free conditions. agsB, which encodes a putative α-1,3-glucan synthase, and two adjacent genes (agtC and gnsA) were upregulated under conditions of nitrogen starvation. Disruption of agsB in A. luchuensis (ΔagsB) resulted in the complete loss of nigeran synthesis. Furthermore, the overexpression of agsB in an Aspergillus oryzae strain that cannot produce nigeran resulted in nigeran synthesis. These results indicated that agsB encodes a nigeran synthase. Therefore, we have renamed the A. luchuensis agsB gene the nigeran synthase gene (nisA). Nigeran synthesis in an agtC mutant (ΔagtC) increased to 121%; conversely, those in the ΔgnsA and ΔagtC ΔgnsA strains decreased to 64% and 63%, respectively, compared to that in the wild-type strain. Our results revealed that AgtC and GnsA play an important role in regulating not only the quantity of nigeran but also its polymerization. Collectively, our results demonstrated that nisA (agsB) is essential for nigeran synthesis in A. luchuensis, whereas agtC and gnsA contribute to the regulation of nigeran synthesis and its polymerization. This research provides insights into fungal cell wall biosynthesis, specifically the molecular evolution of fungal α-glucan synthase genes and the potential utilization of nigeran as a novel biopolymer. IMPORTANCE The fungal cell wall is composed mainly of polysaccharides. Under nitrogen-free conditions, some Aspergillus and Penicillium spp. produce significant levels of nigeran, a fungal cell wall polysaccharide composed of alternating α-1,3/1,4-glucosidic linkages. The mechanisms regulating the biosynthesis and function of nigeran are unknown. Here, we performed RNA sequencing of Aspergillus luchuensis cultured under nitrogen-free or low-nitrogen conditions. A putative α-1,3-glucan synthase gene, whose transcriptional level was upregulated under nitrogen-free conditions, was demonstrated to encode nigeran synthase. Furthermore, two genes encoding an α-glucanotransferase and a hypothetical protein were shown to be involved in controlling the nigeran content and molecular weight. This study reveals genes involved in the synthesis of nigeran, a potential biopolymer, and provides a deeper understanding of fungal cell wall biosynthesis.


Asunto(s)
Aspergillus , Pared Celular/genética , Glucanos/biosíntesis , Glucosiltransferasas/genética , Aspergillus/enzimología , Aspergillus/genética , Proteínas Fúngicas/genética , Nitrógeno , Polimerizacion , RNA-Seq
9.
J Insect Physiol ; 117: 103892, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31170409

RESUMEN

Caste differentiation in eusocial insects is an outstanding example of phenotypic plasticity. Recent studies indicate that epigenetic regulation, including DNA methylation and histone modification, play a role in the morphological and behavioral polyphenism observed in the caste differentiation of hymenopteran insects. The role of epigenetic regulation in termite caste differentiation, however, is still obscure. In this study, we performed a functional analysis of epigenetic-related genes during soldier differentiation in Zootermopsis nevadensis, for which the entire genome sequence is available. In an incipient colony of this species, the oldest 3rd instar larva (No. 1 larva) always differentiates into a presoldier (intermediate stage of soldier), and the next-oldest 3rd instar larva (No. 2 larva) molts into a 4th instar (which functions as a worker). First, we detected seven epigenetic-related genes with significantly increased expression levels in the soldier-destined No. 1 larvae using RNA-seq data. Second, RNA interference (RNAi) of these seven genes was performed in the No. 1 larvae. RNAi of three histone modifying genes extended the presoldier molting period. Furthermore, these RNAi treatments reduced the expression levels of genes involved in juvenile hormone (JH) synthesis, binding and signaling. These results indicate that epigenetic-related genes do not directly affect termite soldier differentiation; nonetheless, some histone modifying genes have an effect on molting periods, possibly due to the regulation of JH action during soldier differentiation.


Asunto(s)
Código de Histonas/genética , Isópteros/genética , Muda/genética , Animales , Metilación de ADN , Epigénesis Genética , Isópteros/metabolismo , Hormonas Juveniles/metabolismo
10.
Ecol Evol ; 9(6): 3446-3456, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30962904

RESUMEN

One of the most striking examples of phenotypic plasticity is the different phenotypes (i.e., castes) within a same nest of social insects. Castes usually derive from a single genotype initially by receiving social cues among individuals during development. Specific gene expression changes may be involved in caste differentiation, and thus, the regulatory mechanism of these changes should be clarified in order to understand social maintenance and evolution. The damp-wood termite Zootermopsis nevadensis is one of the most important model termite species, due to not only the availability of genomic, transcriptomic, and epigenomic information but also evidence that soldier- and worker-destined individuals can be identified in natural conditions. Given that the nutritional intakes via social interactions are crucial for caste differentiation in this species, there is a possibility that transcriptomic changes are influenced by the nutritional difference among these individuals. Here, whole body RNA-seq analysis of 3rd-instar larvae with biological replications and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were conducted. We found the drastic expression differences during caste developments between soldier- and worker-destined individuals. The results indicated that there are several key signaling pathways responsible for caste formations, which are involved in developments and social interactions. Particularly, the nutritional sensitive signaling was upregulated in soldier-destined individuals, while some metabolic pathways were identified in worker-destined individuals. These bioinformatic data obtained should be utilized to examine the molecular mechanisms of caste determination in social insects.

11.
Proc Biol Sci ; 285(1883)2018 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-30051867

RESUMEN

Social communication among castes is a crucial component of insect societies. However, the genes involved in soldier determination through the regulation of inter-individual interactions are largely unknown. In an incipient colony of the damp-wood termite Zootermopsis nevadensis, the first larva to develop into a third instar always differentiates into a soldier via frequent trophallactic feeding from the reproductives. Here, by performing RNA-seq analysis of third instar larvae, a homologue of Neural Lazarillo (named ZnNLaz1) was found to be the most differentially expressed gene in these soldier-destined larvae, compared with worker-destined larvae. This gene encodes a lipocalin protein related to the transport of small hydrophobic molecules. RNAi-induced knockdown of ZnNLaz1 significantly inhibited trophallactic interactions with the queen and decreased the soldier differentiation rates. This protein is localized in the gut, particularly in the internal wall, of soldier-destined larvae, suggesting that it is involved in the integration of social signals from the queen through frequent trophallactic behaviours. Based on molecular phylogenetic analysis, we suggest that a novel function of termite NLaz1 has contributed to social evolution from the cockroach ancestors of termites. These results indicated that a high larval NLaz1 expression is crucial for soldier determination through social communication in termites.


Asunto(s)
Proteínas de Insectos/genética , Isópteros/fisiología , Lipocalinas/genética , Animales , Femenino , Expresión Génica , Proteínas de Insectos/metabolismo , Isópteros/genética , Isópteros/crecimiento & desarrollo , Larva/genética , Larva/crecimiento & desarrollo , Larva/fisiología , Lipocalinas/metabolismo , Masculino , Dinámica Poblacional , Conducta Social
12.
PLoS Genet ; 14(4): e1007338, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29641521

RESUMEN

A working knowledge of the proximate factors intrinsic to sterile caste differentiation is necessary to understand the evolution of eusocial insects. Genomic and transcriptomic analyses in social hymenopteran insects have resulted in the hypothesis that sterile castes are generated by the novel function of co-opted or recruited universal gene networks found in solitary ancestors. However, transcriptome analysis during caste differentiation has not been tested in termites, and evolutionary processes associated with acquiring the caste are still unknown. Termites possess the soldier caste, which is regarded as the first acquired permanently sterile caste in the taxon. In this study, we performed a comparative transcriptome analysis in termite heads during 3 molting processes, i.e., worker, presoldier and soldier molts, under natural conditions in an incipient colony of the damp-wood termite Zootermopsis nevadensis. Although similar expression patterns were observed during each molting process, more than 50 genes were shown to be highly expressed before the presoldier (intermediate stage of soldier) molt. We then performed RNA interference (RNAi) of the candidate 13 genes, including transcription factors and uncharacterized protein genes, during presoldier differentiation induced by juvenile hormone (JH) analog treatment. Presoldiers induced after RNAi of two genes related to TGFß (Transforming growth factor beta) signaling were extremely unusual and possessed soldier-like phenotypes. These individuals also displayed aggressive behaviors similar to natural soldiers when confronted with Formica ants as hypothetical enemies. These presoldiers never molted into the next instar, presumably due to the decreased expression levels of the molting hormone (20-hydroxyecdysone; 20E) signaling genes. These results suggest that TGFß signaling was acquired for the novel function of regulating between JH and 20E signaling during soldier differentiation in termites.


Asunto(s)
Hormonas de Insectos/metabolismo , Isópteros/genética , Muda/genética , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Genes de Insecto/genética , Cabeza/crecimiento & desarrollo , Isópteros/crecimiento & desarrollo , Isópteros/metabolismo , Fenotipo , Interferencia de ARN , Transcriptoma/genética
14.
R Soc Open Sci ; 3(2): 150574, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26998327

RESUMEN

Caste polyphenism in social insects is regulated by social interactions among colony members. Trophallaxis is one of the most frequently observed interactions, but no studies have been conducted identifying the intrinsic factors involved in this behaviour and caste differentiation. Dopamine (DA) has multiple roles in the modulation of behaviours and physiology, and it produces species-specific behaviours in animals. Here, to verify the role of DA in termite soldier differentiation, we focused on the first soldier in an incipient colony of Zootermopsis nevadensis, which always differentiates from the oldest 3rd instar (No. 1 larva) via a presoldier. First, brain DA levels of the No. 1 larva at day 3 after its appearance were significantly higher than day 0. Second, DA synthesis gene expression levels were extraordinarily high in the No. 1 larva at day 0-1 after appearance. Finally, injection of a DA receptor antagonist into the No. 1 larva resulted in the inhibition of presoldier differentiation. Behavioural observations of the antagonist or control-injected larvae suggested that brain DA and signalling activity regulate the frequencies of trophallaxis from reproductives and presoldier differentiation. Because trophallaxis is a social behaviour frequently observed in natural conditions, the role of DA should be investigated in other social insects with frequent trophallactic and allogrooming behaviour.

15.
Insect Biochem Mol Biol ; 64: 25-31, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26188329

RESUMEN

The Methoprene-tolerant (Met) protein has been established as a juvenile hormone (JH) receptor. Knockdown of the Met gene caused precocious metamorphosis and suppression of ovarian development. However, the function of Met in caste development of social insects is unclear. In termites, JH acts as a central factor for caste development, especially for soldier differentiation, which involves two molts from workers via a presoldier stage. Increased JH titer in workers is needed for the presoldier molt, and the high JH titer is maintained throughout the presoldier period. Although presoldiers have the fundamental morphological features of soldiers, the nature of the cuticle is completely different from that of soldiers. We expected that JH signals via Met are involved in soldier-specific morphogenesis of the head and mandibles during soldier differentiation, especially in the presoldier period, in natural conditions. To test this hypothesis, we focused on soldier differentiation in an incipient colony of the damp-wood termite Zootermopsis nevadensis. Met homolog (ZnMet) expression in heads increased just after the presoldier molt. This high expression was reduced by ZnMet double stranded (dsRNA) injection before the presoldier molt. Although this treatment did not cause any morphological changes in presoldiers, it caused strong effects on soldiers, their mandibles being significantly shorter and head capsules smaller than those of control soldiers. Injection of ZnMet dsRNA throughout the presoldier stage did not affect the formation of soldier morphology, including cuticle formation. These results suggested that the rapid increase in ZnMet expression and subsequent activation of JH signaling just after the presoldier molt are needed for the formation of soldier-specific weapons. Therefore, besides its established role in insect metamorphosis, the JH receptor signaling also underlies soldier development in termites.


Asunto(s)
Isópteros/crecimiento & desarrollo , Isópteros/genética , Hormonas Juveniles/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Cabeza/crecimiento & desarrollo , Hormonas Juveniles/genética , Mandíbula/crecimiento & desarrollo , Mandíbula/metabolismo , Muda , Morfogénesis , ARN Bicatenario/metabolismo , Transducción de Señal
16.
Zoolog Sci ; 31(9): 573-81, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25186928

RESUMEN

Eusocial insects have highly sophisticated societies, showing a conspicuous division of labor associated with different phenotypes. These castes show specific morphologies adapted to discrete tasks. Termite castes are divided into reproductives, workers, and soldiers. Individuals with soldier-like heads as well as developed gonads have been recorded in several primitive families, and are called reproductive soldiers. In some termite species, however, a trade-off-like developmental relationship has been shown between soldier and imaginal characteristics. Thus, while the mechanism that regulates the development of both characteristics in the same individual is interesting, the details are still unclear. We focused on juvenile hormone (JH), which is involved not only in termite caste differentiation, but also in the gonad development of many insects, and we aimed to clarify the effects of JH on the differentiation of reproductive soldiers in Zootermopsis nevadensis. We succeeded in the induction of individuals with reproductive soldier-like gross morphologies by JH analog (JHA) application to several developmental stages. We also observed that gonad development was significantly promoted by JHA application after molts in the induced reproductive soldier-like individuals, but not in natural soldiers. Finally, we confirmed that the gene expression level of vitellogenin was extremely high in the induced reproductive soldier-like individuals following JHA treatment after the molt. These results suggested that soldiers do not have regulatory mechanisms for gonad development involving JH, and the regulation of reproductive soldiers development is different from that of soldiers. Reproductive soldiers may have evolved independently from the soldier caste rather than from an intermediate stage of soldier evolution.


Asunto(s)
Isópteros/efectos de los fármacos , Hormonas Juveniles/farmacología , Conducta Sexual Animal/efectos de los fármacos , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Gónadas/efectos de los fármacos , Isópteros/genética , Masculino , Reproducción/efectos de los fármacos , Vitelogeninas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA