Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Am Chem Soc ; 146(32): 22193-22207, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38963258

RESUMEN

Glycans cover the cell surface to form the glycocalyx, which governs a myriad of biological phenomena. However, understanding and regulating glycan functions is extremely challenging due to the large number of heterogeneous glycans that engage in intricate interaction networks with diverse biomolecules. Glycocalyx-editing techniques offer potent tools to probe their functions. In this study, we devised a HaloTag-based technique for glycan manipulation, which enables the introduction of chemically synthesized glycans onto a specific protein (protein of interest, POI) and concurrently incorporates fluorescent units to attach homogeneous, well-defined glycans to the fluorescence-labeled POIs. Leveraging this HaloTag-based glycan-display system, we investigated the influence of the interactions between Gal-3 and various N-glycans on protein dynamics. Our analyses revealed that glycosylation modulates the lateral diffusion of the membrane proteins in a structure-dependent manner through interaction with Gal-3, particularly in the context of the Gal-3-induced formation of the glycan network (galectin lattice). Furthermore, N-glycan attachment was also revealed to have a significant impact on the extracellular vesicle-loading of membrane proteins. Notably, our POI-specific glycan introduction does not disrupt intact glycan structures, thereby enabling a functional analysis of glycans in the presence of native glycan networks. This approach complements conventional glycan-editing methods and provides a means for uncovering the molecular underpinnings of glycan functions on the cell surface.


Asunto(s)
Vesículas Extracelulares , Galectinas , Proteínas de la Membrana , Polisacáridos , Polisacáridos/química , Polisacáridos/metabolismo , Glicosilación , Galectinas/metabolismo , Galectinas/química , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Humanos , Difusión , Membrana Celular/metabolismo , Membrana Celular/química
2.
Tuberculosis (Edinb) ; 143: 102391, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37574397

RESUMEN

Mycobacteria enter host phagocytes, such as macrophages by binding to several receptors on phagocytes. Several mycobacterial species, including Mycobacterium tuberculosis have evolved systems to evade host bactericidal pathways. Lipoarabinomannan (LAM) is an essential mycobacterial molecule for both binding to phagocytes and escaping from bactericidal pathways. Integrin CD11b plays critical roles as a phagocytic receptor and contributes to host defense by mediating both nonopsonic and opsonic phagocytosis. However, the mechanisms by which CD11b-mediated phagocytosis associates with LAM and drives the phagocytic process of mycobacteria remain to be fully elucidated. We recently identified TMDU3 as anti-LAM IgM antibody against the mannan core of LAM. The present study investigated the roles of CD11b and TMDU3 in macrophage phagocytosis of mycobacteria and subsequent bactericidal lysosomal fusion to phagosomes. CD11b knockout cells generated by a CRISPR/Cas9 system showed significant attenuation of the ability to phagocytose non-opsonized mycobacteria and LAM-conjugated beads. Moreover, recombinant human CD11b protein was found to bind to LAM. TMDU3 markedly inhibited macrophage phagocytosis of non-opsonized mycobacteria. This antibody slightly increased the phagocytosis of mycobacteria under opsonized conditions, whereas it significantly enhanced CD11b-mediated bactericidal functions. Taken together, these results show a novel phylactic role of anti-LAM IgM during mycobacterial infection in macrophages.


Asunto(s)
Infecciones por Mycobacterium , Mycobacterium tuberculosis , Humanos , Mananos/metabolismo , Macrófagos/microbiología , Fagocitosis , Inmunoglobulina M , Lipopolisacáridos
3.
J Cell Biol ; 222(7)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37195633

RESUMEN

Phosphatidylinositol 4-monophosphate [PtdIns(4)P] is a precursor for various phosphoinositides but also a membrane-embedded component crucial for membrane contact sites (MCSs). Several lipid transfer proteins are recruited to MCSs by recognizing PtdIns(4)P; however, it remains poorly elucidated how the production of PtdIns(4)P for lipid transport at MCSs is regulated. Following human genome-wide screening, we discovered that the PtdIns(4)P-related genes PI4KB, ACBD3, and C10orf76 are involved in endoplasmic reticulum-to-Golgi trafficking of ceramide by the ceramide transport protein CERT. CERT preferentially utilizes PtdIns(4)P generated by PI4KB recruited to the Golgi by C10orf76 rather than by ACBD3. Super-resolution microscopy observation revealed that C10orf76 predominantly localizes at distal Golgi regions, where sphingomyelin (SM) synthesis primarily occurs, while the majority of ACBD3 localizes at more proximal regions. This study provides a proof-of-concept that distinct pools of PtdIns(4)P are generated in different subregions, even within the same organelle, to facilitate interorganelle metabolic channeling for the ceramide-to-SM conversion.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Ceramidas , Proteínas de la Membrana , Proteínas Serina-Treonina Quinasas , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ceramidas/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosfatidilinositoles/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo
4.
J Virol ; 97(5): e0005623, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37167561

RESUMEN

Human papillomavirus (HPV) infects epithelial basal cells in the mucosa and either proliferates with the differentiation of the basal cells or persists in them. Multiple host factors are required to support the HPV life cycle; however, the molecular mechanisms involved in cell entry are not yet fully understood. In this study, we performed a genome-wide clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) knockout (KO) screen in HeLa cells and identified folliculin (FLCN), a GTPase-activating protein for Rag GTPases, as an important host factor for HPV infection. The introduction of single guide RNAs for the FLCN gene into HeLa, HaCaT, and ectocervical Ect1 cells reduced infection by HPV18 pseudovirions (18PsVs) and 16PsVs. FLCN KO HeLa cells also exhibited strong resistance to infection with 18PsVs and 16PsVs; nevertheless, they remained highly susceptible to infections with vesicular stomatitis virus glycoprotein-pseudotyped lentivirus and adeno-associated virus. Immunofluorescence microscopy revealed that the numbers of virions binding to the cell surface were slightly increased in FLCN KO cells. However, virion internalization analysis showed that the internalized virions were rapidly degraded in FLCN KO cells. This degradation was blocked by treatment with the lysosome inhibitor bafilomycin A1. Furthermore, the virion degradation phenotype was also observed in Ras-related GTP-binding protein C (RagC) KO cells. These results suggest that FLCN prevents the lysosomal degradation of incoming HPV virions by enhancing lysosomal RagC activity. IMPORTANCE Cell entry by human papillomavirus (HPV) involves a cellular retrograde transport pathway from the endosome to the trans-Golgi network/Golgi apparatus. However, the mechanism by which this viral trafficking is safeguarded is poorly understood. This is the first study showing that the GTPase-activating protein folliculin (FLCN) protects incoming HPV virions from lysosomal degradation and supports infectious cell entry by activating the Rag GTPases, presumably through the suppression of excessive lysosomal biosynthesis. These findings provide new insights into the effects of small GTPase activity regulation on HPV cell entry and enhance our understanding of the HPV degradation pathway.


Asunto(s)
Virus del Papiloma Humano , Infecciones por Papillomavirus , Proteínas Proto-Oncogénicas , Proteínas Supresoras de Tumor , Internalización del Virus , Humanos , Proteínas Activadoras de GTPasa , Células HeLa , Virus del Papiloma Humano/fisiología , Lisosomas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Proto-Oncogénicas/metabolismo
5.
Methods Mol Biol ; 2613: 111-125, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36587075

RESUMEN

Sphingolipids are ubiquitously expressed in eukaryotes and play various functional roles. The key characteristic of sphingolipids is their diversity of molecular species. Sphingomyelin (SM) and glycosphingolipids (GSLs) are the major components of sphingolipids in the plasma membrane, which are composed of ceramide and a polar head-group. SM is the most abundant sphingolipid species in mammalian cells, while GSLs have a wide variety of glycans as head groups. Various fatty acids in ceramide also contribute to the diversity of sphingolipid species. To analyze the cellular function of each sphingolipid species, precise gene manipulation is essential. Recent developments in genome editing technologies have facilitated complete gene disruption in cultured cells. This chapter describes protocols for the construction of various sphingolipid-related gene knockout HeLa cells using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system and for confirmation of changes in their lipid composition using radioisotopes and thin layer chromatography. This sphingolipid-remodeled cell panel is a useful tool for analyzing the cellular functions of sphingolipid species and as a reference for lipid analysis.


Asunto(s)
Edición Génica , Esfingolípidos , Animales , Humanos , Esfingolípidos/metabolismo , Edición Génica/métodos , Células HeLa , Ceramidas/metabolismo , Esfingomielinas/metabolismo , Glicoesfingolípidos , Sistemas CRISPR-Cas , Mamíferos/metabolismo
6.
PLoS Pathog ; 18(12): e1010949, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36480520

RESUMEN

Mumps virus (MuV) is the etiological agent of mumps, a disease characterized by painful swelling of the parotid glands and often accompanied by severe complications. To understand the molecular mechanism of MuV infection, a functional analysis of the involved host factors is required. However, little is known about the host factors involved in MuV infection, especially those involved in the late stage of infection. Here, we identified 638 host proteins that have close proximity to MuV glycoproteins, which are a major component of the viral particles, by proximity labeling and examined comprehensive protein-protein interaction networks of the host proteins. From siRNA screening and immunoprecipitation results, we found that a SNARE subfamily protein, USE1, bound specifically to the MuV fusion (F) protein and was important for MuV propagation. In addition, USE1 plays a role in complete N-linked glycosylation and expression of the MuV F protein.


Asunto(s)
Proteínas SNARE , Proteínas Virales de Fusión , Proteínas Virales de Fusión/genética
7.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35955719

RESUMEN

Ceramide transport protein (CERT) mediates ceramide transfer from the endoplasmic reticulum to the Golgi for sphingomyelin (SM) biosynthesis. CERT is inactivated by multiple phosphorylation at the serine-repeat motif (SRM), and mutations that impair the SRM phosphorylation are associated with a group of inherited intellectual disorders in humans. It has been suggested that the N-terminal phosphatidylinositol 4-monophosphate [PtdIns(4)P] binding domain and the C-terminal ceramide-transfer domain of CERT physically interfere with each other in the SRM phosphorylated state, thereby repressing the function of CERT; however, it remains unclear which regions in CERT are involved in the SRM phosphorylation-dependent repression of CERT. Here, we identified a previously uncharacterized cluster of lysine/arginine residues that were predicted to be located on the outer surface of a probable coiled-coil fold in CERT. Substitutions of the basic amino acids in the cluster with alanine released the SRM-dependent repression of CERT activities, i.e., the synthesis of SM, PtdIns(4)P-binding, vesicle-associated membrane protein-associated protein (VAP) binding, ceramide-transfer activity, and localization to the Golgi, although the effect on SM synthesis activity was only partially compromised by the alanine substitutions, which moderately destabilized the trimeric status of CERT. These results suggest that the basic amino acid cluster in the coiled-coil region is involved in the regulation of CERT function.


Asunto(s)
Proteínas Portadoras , Ceramidas , Alanina/metabolismo , Aminoácidos Básicos/metabolismo , Transporte Biológico/fisiología , Proteínas Portadoras/metabolismo , Ceramidas/metabolismo , Aparato de Golgi/metabolismo , Humanos , Fosfatidilinositoles/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas , Serina/metabolismo
8.
iScience ; 25(7): 104624, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35800758

RESUMEN

Casein kinase 1 γ (CK1G) is involved in the regulation of various cellular functions. For instance, the ceramide transport protein (CERT), which delivers ceramide to the Golgi apparatus for the synthesis of sphingomyelin (SM), is inactivated when it receives multiple phosphorylation by CK1G. Using human genome-wide gene disruption screening with an SM-binding cytolysin, we found that loss of the C-terminal region of CK1G3 rendered the kinase hyperactive in cells. Deletion of the C-terminal 20 amino acids or mutation of cysteine residues expected to be palmitoylated sites redistributed CK1G3 from cytoplasmic punctate compartments to the nucleocytoplasm. Wild-type CK1G3 exhibited a similar redistribution in the presence of 2-bromopalmitate, a protein palmitoylation inhibitor. Expression of C-terminal mutated CK1G1/2/3 similarly induced the multiple phosphorylation of the CERT SRM, thereby down-regulating de novo SM synthesis. These findings revealed that CK1Gs are regulated by a compartmentalization-based mechanism to access substrates present in specific intracellular organelles.

9.
Virology ; 572: 17-27, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35550476

RESUMEN

The enveloped positive-sense RNA viruses including Zika virus (ZIKV) need host lipids to successfully replicate. The nature of the lipids and the replication step(s) where lipids are utilized often vary amongst viruses. In this study, we demonstrate that ZIKV particle envelope is significantly enriched in distinct sphingolipid species. To determine the role of sphingolipids in ZIKV replication, we leveraged a panel of sphingolipid-deficient cell lines. Notably, knockout of glucosylceramide and lactosylceramide synthase encoding genes (GCSKO; B4G5KO) resulted in a marked decrease in ZIKV titers. GCSKO or pharmacological inhibition of GCS also led to a significant decrease in ZIKV genome replication. Further analysis indicated that GCSKO reduced intracellular virus titers but had minimal impact on ZIKV binding. Restoration of B4G5 expression in B4G5KO cells or supplementing PDMP-treated cells with glucosylceramide led to a significant rescue of ZIKV replication. Altogether, our findings suggest that ZIKV needs glycosphingolipids to facilitate virus replication.


Asunto(s)
Infección por el Virus Zika , Virus Zika , Glucosilceramidas/metabolismo , Glicoesfingolípidos/metabolismo , Humanos , Replicación Viral/fisiología , Virus Zika/fisiología
10.
Front Genet ; 13: 801382, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35391802

RESUMEN

The Vero cell line is an immortalized cell line established from kidney epithelial cells of the African green monkey. A variety of Vero sublines have been developed and can be classified into four major cell lineages. In this study, we determined the whole-genome sequence of Vero E6 (VERO C1008), which is one of the most widely used cell lines for the proliferation and isolation of severe acute respiratory syndrome coronaviruses (SARS-CoVs), and performed comparative analysis among Vero JCRB0111, Vero CCL-81, Vero 76, and Vero E6. Analysis of the copy number changes and loss of heterozygosity revealed that these four sublines share a large deletion and loss of heterozygosity on chromosome 12, which harbors type I interferon and CDKN2 gene clusters. We identified a substantial number of genetic differences among the sublines including single nucleotide variants, indels, and copy number variations. The spectrum of single nucleotide variants indicated a close genetic relationship between Vero JCRB0111 and Vero CCL-81, and between Vero 76 and Vero E6, and a considerable genetic gap between the former two and the latter two lines. In contrast, we confirmed the pattern of genomic integration sites of simian endogenous retroviral sequences, which was consistent among the sublines. We identified subline-specific/enriched loss of function and missense variants, which potentially contribute to the differences in response to viral infection among the Vero sublines. In particular, we identified four genes (IL1RAP, TRIM25, RB1CC1, and ATG2A) that contained missense variants specific or enriched in Vero E6. In addition, we found that V739I variants of ACE2, which functions as the receptor for SARS-CoVs, were heterozygous in Vero JCRB0111, Vero CCL-81, and Vero 76; however, Vero E6 harbored only the allele with isoleucine, resulting from the loss of one of the X chromosomes.

11.
Int J Mol Sci ; 23(7)2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35409383

RESUMEN

The ceramide transport protein (CERT) delivers ceramide from the endoplasmic reticulum (ER) to the Golgi apparatus, where ceramide is converted to sphingomyelin (SM). The function of CERT is regulated in two distinct phosphorylation-dependent events: multiple phosphorylations in a serine-repeat motif (SRM) and phosphorylation of serine 315 residue (S315). Pharmacological inhibition of SM biosynthesis results in an increase in SRM-dephosphorylated CERT, which serves as an activated form, and an enhanced phosphorylation of S315, which augments the binding of CERT to ER-resident VAMP-associated protein (VAP), inducing the full activation of CERT to operate at the ER-Golgi membrane contact sites (MCSs). However, it remains unclear whether the two phosphorylation-dependent regulatory events always occur coordinately. Here, we describe that hyperosmotic stress induces S315 phosphorylation without affecting the SRM-phosphorylation state. Under hyperosmotic conditions, the binding of CERT with VAP-A is enhanced in an S315 phosphorylation-dependent manner, and this increased binding occurs throughout the ER rather than restrictedly at the ER-Golgi MCSs. Moreover, we found that de novo synthesis of SM with very-long acyl chains preferentially increases via a CERT-independent mechanism under hyperosmotic-stressed cells, providing an insight into a CERT-independent ceramide transport pathway for de novo synthesis of SM.


Asunto(s)
Proteínas Portadoras , Ceramidas , Transporte Biológico , Proteínas Portadoras/metabolismo , Ceramidas/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas , Serina/metabolismo , Esfingomielinas/metabolismo
12.
Front Microbiol ; 12: 751909, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867872

RESUMEN

Many efforts have been dedicated to the discovery of antiviral drug candidates against the mumps virus (MuV); however, no specific drug has yet been approved. The development of efficient screening methods is a key factor for the discovery of antiviral candidates. In this study, we evaluated a screening method using an Aequorea coerulescens green fluorescent protein-expressing MuV infectious molecular clone. The application of this system to screen for active compounds against MuV replication revealed that CD437, a retinoid acid receptor agonist, has anti-MuV activity. The point of antiviral action was a late step(s) in the MuV life cycle. The replication of other paramyxoviruses was also inhibited by CD437. The induction of retinoic acid-inducible gene (RIG)-I expression is a reported mechanism for the antiviral activity of retinoids, but our results indicated that CD437 did not stimulate RIG-I expression. Indeed, we observed antiviral activity despite the absence of RIG-I, suggesting that CD437 antiviral activity does not require RIG-I induction.

13.
Int J Mol Sci ; 22(9)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066520

RESUMEN

Shiga toxin (STx) or Vero toxin is a virulence factor produced by enterohemorrhagic Escherichia coli. The toxin binds to the glycosphingolipid globotriaosylceramide (Gb3) for its entry, and causes cell death by inhibiting ribosome function. Previously, we performed a loss-of-function screen in HeLa cells using a human CRISPR knockout (KO) library and identified various host genes required for STx-induced cell death. To determine whether this library targeted to the human genome is applicable to non-human primate cells and to identify previously unrecognized factors crucial for STx-induced cell death, we herein performed a similar screen in the African green monkey kidney-derived Vero C1008 subline. Many genes relevant to metabolic enzymes and membrane trafficking were enriched, although the number of enriched genes was less than that obtained in the screening for HeLa cells. Of note, several genes that had not been enriched in the previous screening were enriched: one of these genes was SYS1, which encodes a multi-spanning membrane protein in the Golgi apparatus. In SYS1 KO Vero cells, expression of Gb3 and sphingomyelin was decreased, while that of glucosylceramide and lactosylceramide was increased. In addition, loss of SYS1 inhibited the biosynthesis of protein glycans, deformed the Golgi apparatus, and perturbed the localization of trans-Golgi network protein (TGN) 46. These results indicate that the human CRISPR KO library is applicable to Vero cell lines, and SYS1 has a widespread effect on glycan biosynthesis via regulation of intra-Golgi and endosome-TGN retrograde transports.


Asunto(s)
Proteínas de la Membrana/metabolismo , Toxina Shiga/toxicidad , Secuencia de Aminoácidos , Animales , Sistemas CRISPR-Cas/genética , Muerte Celular/efectos de los fármacos , Chlorocebus aethiops , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Humanos , Proteínas de la Membrana/química , Polisacáridos/biosíntesis , Proteínas de Unión al ARN/metabolismo , Células Vero , Red trans-Golgi/metabolismo
14.
Sci Rep ; 11(1): 6746, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33762624

RESUMEN

Polio or poliomyelitis is a disabling and life-threatening disease caused by poliovirus (PV). As a consequence of global polio vaccination efforts, wild PV serotypes 2 and 3 have been eradicated around the world, and wild PV serotype 1-transmitted cases have been largely eliminated except for limited regions. However, vaccine-derived PV, pathogenically reverted live PV vaccine strains, has become a serious issue. For the global eradication of polio, the World Health Organization is conducting the third edition of the Global Action Plan, which is requesting stringent control of potentially PV-infected materials. To facilitate the mission, we generated a PV-nonsusceptible Vero cell subline, which may serve as an ideal replacement of standard Vero cells to isolate emerging/re-emerging viruses without the risk of generating PV-infected materials.


Asunto(s)
Poliovirus/fisiología , Células Vero/virología , Tropismo Viral , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Técnicas de Cultivo de Célula , Células Cultivadas , Chlorocebus aethiops , Salud Global , Humanos , Poliomielitis/epidemiología , Poliomielitis/virología , Receptores Virales/química , Receptores Virales/genética , Receptores Virales/metabolismo , Replicación Viral , Organización Mundial de la Salud
15.
EMBO J ; 40(8): e107238, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33749896

RESUMEN

Glycosphingolipids are important components of the plasma membrane where they modulate the activities of membrane proteins including signalling receptors. Glycosphingolipid synthesis relies on competing reactions catalysed by Golgi-resident enzymes during the passage of substrates through the Golgi cisternae. The glycosphingolipid metabolic output is determined by the position and levels of the enzymes within the Golgi stack, but the mechanisms that coordinate the intra-Golgi localisation of the enzymes are poorly understood. Here, we show that a group of sequentially-acting enzymes operating at the branchpoint among glycosphingolipid synthetic pathways binds the Golgi-localised oncoprotein GOLPH3. GOLPH3 sorts these enzymes into vesicles for intra-Golgi retro-transport, acting as a component of the cisternal maturation mechanism. Through these effects, GOLPH3 controls the sub-Golgi localisation and the lysosomal degradation rate of specific enzymes. Increased GOLPH3 levels, as those observed in tumours, alter glycosphingolipid synthesis and plasma membrane composition thereby promoting mitogenic signalling and cell proliferation. These data have medical implications as they outline a novel oncogenic mechanism of action for GOLPH3 based on glycosphingolipid metabolism.


Asunto(s)
Proliferación Celular , Glicoesfingolípidos/biosíntesis , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Células Cultivadas , Células HeLa , Humanos , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Transducción de Señal
17.
Biochem Biophys Res Commun ; 536: 73-79, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33360824

RESUMEN

Cerebrospinal fluid (CSF) contains glycosphingolipids, including lactosylceramide (LacCer, Galß(1,4)Glcß-ceramide). LacCer and its structural isomer, galabiosylceramide (Gb2, Galα(1,4)Galß-ceramide), are classified as ceramide dihexosides (CDH). Gb2 is degraded by α-galactosidase A (GLA) in lysosomes, and genetic GLA deficiency causes Fabry disease, an X-linked lysosomal storage disorder. In patients with Fabry disease, Gb2 accumulates in organs throughout the body. While Gb2 has been reported to be in the liver, kidney, and urine of healthy individuals, its presence in CSF has not been reported, either in patients with Fabry disease or healthy controls. Here, we isolated CDH fractions from CSF of patients with idiopathic normal pressure hydrocephalus. Purified CDH fractions showed positive reaction with Shiga toxin, which specifically binds to the Galα(1,4)Galß structure. The isolated CDH fractions were analyzed by hydrophilic interaction chromatography (HILIC)-electrospray ionization tandem mass spectrometry (ESI-MS/MS). HILIC-ESI-MS/MS separated LacCer and Gb2 and revealed the presence of Gb2 and LacCer in the fractions. We also found Gb2 in CSF from neurologically normal control subjects. This is the first report to show Gb2 exists in human CSF.


Asunto(s)
Gangliósidos/líquido cefalorraquídeo , Vías Biosintéticas , Galactosiltransferasas/metabolismo , Gangliósidos/biosíntesis , Gangliósidos/química , Glicoesfingolípidos/aislamiento & purificación , Glicosiltransferasas/metabolismo , Células HeLa , Humanos , Hidrocefalia/líquido cefalorraquídeo
18.
Front Genet ; 11: 546106, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193621

RESUMEN

The human hepatoma-derived HuH-7 cell line and its derivatives (Huh7.5 and Huh7.5.1) have been widely used as a convenient experimental substitute for primary hepatocytes. In particular, these cell lines represent host cells suitable for propagating the hepatitis C virus (HCV) in vitro. The Huh7.5.1-8 cell line, a subline of Huh7.5.1, can propagate HCV more efficiently than its parental cells. To provide genomic information for cells' quality control, we performed whole-genome sequencing of HuH-7 and Huh7.5.1-8 and identified their characteristic genomic deletions, some of which are applicable to an in-house test for cell authentication. Among the genes related to HCV infection and replication, 53 genes were found to carry missense or loss-of-function mutations likely specific to the HuH-7 and/or Huh7.5.1-8. Eight genes, including DDX58 (RIG-I), BAX, EP300, and SPP1 (osteopontin), contained mutations observed only in Huh7.5.1-8 or mutations with higher frequency in Huh7.5.1-8. These mutations might be relevant to phenotypic differences between the two cell lines and may also serve as genetic markers to distinguish Huh7.5.1-8 cells from the ancestral HuH-7 cells.

19.
J Org Chem ; 85(24): 16014-16023, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33058668

RESUMEN

Individual interactions between glycans and their receptors are usually weak, although these weak interactions can combine to realize a strong interaction (multivalency). Such multivalency plays a crucial role in the recognition of host cells by pathogens. Glycodendrimers are useful materials for the reconstruction of this multivalent interaction. However, the introduction of a large number of glycans to a dendrimer core is fraught with difficulties. We herein synthesized antipathogenic glycodendrimers using the self-activating click chemistry (SACC) method developed by our group. The excellent reactivity of SACC enabled the efficient preparation of sialyl glycan and Gb3 glycan dendrimers, which exhibited strong avidity toward hemagglutinin on influenza virus and Shiga toxin B subunit produced by Escherichia coli, respectively. We demonstrated the usefulness of SACC-based glycodendrimers as antipathogenic compounds.


Asunto(s)
Química Clic , Dendrímeros , Polisacáridos
20.
J Virol ; 94(23)2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32938759

RESUMEN

Some plus-stranded RNA viruses generate double-membrane vesicles (DMVs), one type of the membrane replication factories, as replication sites. Little is known about the lipid components involved in the biogenesis of these vesicles. Sphingomyelin (SM) is required for hepatitis C virus (HCV) replication, but the mechanism of SM involvement remains poorly understood. SM biosynthesis starts in the endoplasmic reticulum (ER) and gives rise to ceramide, which is transported from the ER to the Golgi by the action of ceramide transfer protein (CERT), where it can be converted to SM. In this study, inhibition of SM biosynthesis, either by using small-molecule inhibitors or by knockout (KO) of CERT, suppressed HCV replication in a genotype-independent manner. This reduction in HCV replication was rescued by exogenous SM or ectopic expression of the CERT protein, but not by ectopic expression of nonfunctional CERT mutants. Observing low numbers of DMVs in stable replicon cells treated with a SM biosynthesis inhibitor or in CERT-KO cells transfected with either HCV replicon or with constructs that drive HCV protein production in a replication-independent system indicated the significant importance of SM to DMVs. The degradation of SM of the in vitro-isolated DMVs affected their morphology and increased the vulnerability of HCV RNA and proteins to RNase and protease treatment, respectively. Poliovirus, known to induce DMVs, showed decreased replication in CERT-KO cells, while dengue virus, known to induce invaginated vesicles, did not. In conclusion, these findings indicated that SM is an essential constituent of DMVs generated by some plus-stranded RNA viruses.IMPORTANCE Previous reports assumed that sphingomyelin (SM) is essential for HCV replication, but the mechanism was unclear. In this study, we showed for the first time that SM and ceramide transfer protein (CERT), which is in the SM biosynthesis pathway, are essential for the biosynthesis of double-membrane vesicles (DMVs), the sites of viral replication. Low numbers of DMVs were observed in CERT-KO cells transfected with replicon RNA or with constructs that drive HCV protein production in a replication-independent system. HCV replication was rescued by ectopic expression of the CERT protein, but not by CERT mutants, that abolishes the binding of CERT to vesicle-associated membrane protein-associated protein (VAP) or phosphatidylinositol 4-phosphate (PI4P), indicating new roles for VAP and PI4P in HCV replication. The biosynthesis of DMVs has great importance to replication by a variety of plus-stranded RNA viruses. Understanding of this process is expected to facilitate the development of diagnosis and antivirus.


Asunto(s)
Proteínas Portadoras/metabolismo , Hepacivirus/metabolismo , Esfingomielinas/metabolismo , Replicación Viral/fisiología , Transporte Biológico , Proteínas Portadoras/genética , Línea Celular , Ceramidas , Retículo Endoplásmico/metabolismo , Técnicas de Inactivación de Genes , Aparato de Golgi/metabolismo , Células HEK293 , Hepatitis C/virología , Humanos , Fosfatos de Fosfatidilinositol , ARN Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA