RESUMEN
Port-related activities have a detrimental impact on the air quality both at the point of source and for considerable distances beyond. These activities include, but are not limited to, heavy cargo traffic, onboard, and at-berth emissions. Due to differences in construction, operation, location, and policies at ports, the site-specific air pollution cocktail could result in different human health risks. Thus, monitoring and evaluating such emissions are essential to predict the risk to the community. Environmental agencies often monitor key pollutants (PM2.5, PM10, NO2, SO2), but the volatile organic carbons (VOCs) most often are not, due to its analytical challenging. This study intends to fill that gap and evaluate the VOC emissions caused by activities related to the port of Paranaguá - one of the largest bulk ports in Latin America - by characterizing BTEX concentrations at the port and its surroundings. At seven different sites, passive samplers were used to measure the dispersion of BTEX concentrations throughout the port and around the city at weekly intervals from November 2018 to January 2019. The average and uncertainty of BTEX concentrations (µg m-3) were 0.60 ± 0.43, 5.58 ± 3.80, 3.30 ± 2.41, 4.66 ± 3.67, and 2.82 ± 1.95 for benzene, toluene, ethylbenzene, m- and p-xylene, and o-xylene, respectively. Relationships between toluene and benzene and health risk analysis were used to establish the potential effects of BTEX emissions on the population of the city of Paranaguá. Ratio analysis (T/B, B/T, m,p X/Et, and m,p X/B) indicate that the BTEX levels are mainly from fresh emission sources and that photochemical ageing was at minimum. The cancer risk varied across the sampling trajectory, whereas ethylbenzene represented a moderate cancer risk development for the exposed population in some of the locations. This study provided the necessary baseline data to support policymakers on how to change the circumstances of those currently at risk, putting in place a sustainable operation.
Asunto(s)
Contaminantes Atmosféricos , Humanos , Contaminantes Atmosféricos/análisis , Benceno/análisis , Monitoreo del Ambiente , América Latina , Derivados del Benceno/análisis , Xilenos/análisis , Tolueno/análisisRESUMEN
The global burden of disease estimated that approximately 7.1 million deaths worldwide were related to air pollution in 2016. However, only a limited number of small- and middle-sized cities have air quality monitoring networks. To date, air quality in terms of particulate matter is still mainly focused on mass concentration, with limited compositional monitoring even in mega cities, despite evidence indicating differential toxicity of particulate matter. As this evidence is far from conclusive, we conducted PM2.5 bioaccessibility studies of potentially harmful elements in a medium-sized city, Londrina, Brazil. The data was interpreted in terms of source apportionment, the health risk evaluation and the bioaccessibility of inorganic contents in an artificial lysosomal fluid. The daily average concentration of PM2.5 was below the WHO guideline, however, the chemical health assessment indicated a considerable health risk. The in vitro evaluation showed different potential mobility when compared to previous studies in large-sized cities, those with 1 million inhabitants or more (Curitiba and Manaus). The new WHO guideline for PM2.5 mass concentration puts additional pressure on cities where air pollution monitoring is limited and/or neglected, because decision making is mainly revenue-driven and not socioeconomic-driven. Given the further emerging evidence that PM chemical composition is as, or even more, important than mass concentration levels, the research reported in the paper could pave the way for the necessary inter- and intra-city collaborations that are needed to address this global health challenge.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Ciudades , Contaminación del Aire/análisis , Material Particulado/análisis , Organización Mundial de la Salud , Monitoreo del AmbienteRESUMEN
Recent studies to quantify the health risks that fine particulate matter with an aerodynamic less than 2.5 µm (PM2.5) pose use in vitro approaches. One of these approaches is to incubate PM2.5 in artificial lysosomal fluid for a given period at body temperature. These body fluids used have a high ionic strength and as such can be challenging samples to analyze with atomic spectroscopy techniques. As PM2.5 is a primary health hazard because it is tiny enough to penetrate deep into the lungs and could, in addition, dissolve in the lung fluid it is important to quantify elements of toxic and/or carcinogenic concerns, reliably and accurately. Sophisticated instrumentation and expensive pre-treatment of challenging samples are not always available, especially in developing countries. To evaluate the applicability of graphite furnace atomic absorption spectrometry (GFAAS) without Zeeman correction capability to detect trace quantities of heavy metals leached from PM2.5 on to artificial lung fluid, univariate and multivariate approaches have been used for optimization purposes. The limits of quantification, LOQ, obtained by the optimized method were: 2 µg L-1 (Cu), 3 µg L-1 (Cr), 1 µg L-1 (Mn), and 10 µg L-1 (Pb). The addition/recovery experiments had a mean accuracy of: (Cu) 99 ± 7%; 110 ± 8% (Cr); 95 ± 9% (Mn), and 96 ± 11% (Pb). The average soluble fractions of PM2.5 incubated in artificial lysosomal fluid (ALF) for 1 h were: 1.2 ± 0.01 ng m-3 Cu, 0.4 ± 0.01 ng m-3 Cr, 0.6 ± 0.01 ng m-3 Mn, and 4.8 ± 0.03 ng m-3 Pb. Using historical elemental averages of PM2.5 in Curitiba (Cu 3.3 ng m-3, Cr 2.1 ng m-3, Mn 6.1 ng m-3, Pb 21 ng m-3), the percentage bioaccessibility were determined to be Cu 38%, Cr 20%, Mn 10%, and Pb 23%. The elemental values of the atmospheric soluble fraction of Cu, Cr, and Mn were below the inhalation risk concentrations. However, for Pb, the atmospheric soluble fraction exceeded the inhalation unit risk of 0.012 ng m-3. This robust and straightforward GF AAS method is pivotal for low and middle-income countries were most air pollution adverse effects occur and established lower-cost technologies are likely unavailable.
RESUMEN
Limited studies have reported on in-vitro analysis of PM2.5 but as far as the authors are aware, bioaccessibility of PM2.5 in artificial lysosomal fluid (ALF) has not been linked to urban development models before. The Brazilian cities Manaus (Amazon) and Curitiba (South region) have different geographical locations, climates, and urban development strategies. Manaus drives its industrialization using the free trade zone policy and Curitiba adopted a services centered economy driven by sustainability. Therefore, these two cities were used to illustrate the influence that these different models have on PM2.5 in vitro profile. We compared PM2.5 mass concentrations and the average total elemental and bioaccessible profiles for Cu, Cr, Mn, and Pb. The total average elemental concentrations followed Mn > Pb > Cu > Cr in Manaus and Pb > Mn > Cu > Cr in Curitiba. Mn had the lowest solubility while Cu showed the highest bioaccessibility (100%) and was significantly higher in Curitiba than Manaus. Cr and Pb had higher bioaccessibility in Manaus than Curitiba. Despite similar mass concentrations, the public health risk in Manaus was higher than in Curitiba indicating that the free trade zone had a profound effect on the emission levels and sources of airborne PM. These findings illustrate the importance of adopting sustainable air quality strategies in urban planning.
Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente , Metales Pesados/análisis , Material Particulado/análisis , Remodelación Urbana , Brasil , Ciudades , Desarrollo Industrial , Exposición por Inhalación , Medición de RiesgoRESUMEN
Highly oxygenated molecules (HOMs) play an important role in the formation and evolution of secondary organic aerosols (SOA). However, the abundance of HOMs in different environments and their relation to the oxidative potential of fine particulate matter (PM) are largely unknown. Here, we investigated the relative HOM abundance and radical yield of laboratory-generated SOA and fine PM in ambient air ranging from remote forest areas to highly polluted megacities. By electron paramagnetic resonance and mass spectrometric investigations, we found that the relative abundance of HOMs, especially the dimeric and low-volatility types, in ambient fine PM was positively correlated with the formation of radicals in aqueous PM extracts. SOA from photooxidation of isoprene, ozonolysis of α- and ß-pinene, and fine PM from tropical (central Amazon) and boreal (Hyytiälä, Finland) forests exhibited a higher HOM abundance and radical yield than SOA from photooxidation of naphthalene and fine PM from urban sites (Beijing, Guangzhou, Mainz, Shanghai, and Xi'an), confirming that HOMs are important constituents of biogenic SOA to generate radicals. Our study provides new insights into the chemical relationship of HOM abundance, composition, and sources with the yield of radicals by laboratory and ambient aerosols, enabling better quantification of the component-specific contribution of source- or site-specific fine PM to its climate and health effects.
Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles , Beijing , China , FinlandiaRESUMEN
This research aims to assess air quality in a transitional location between city and forest in the Amazon region. Located downwind of the Manaus metropolitan region, this study is part of the large-scale experiment GoAmazon2014/5. Based on their pollutant potential, inhalable particulate matter (PM2.5), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), hydrogen sulfide (H2S), benzene, toluene, ethylbenzene and meta-, orto-, para-xylene (BTEX) were selected for analysis. Sampling took place during the wet season (March-April 2014) and dry season (August-October 2014). The number of forest fires in the surroundings was higher during the dry wet season. Results show significant increase during the dry season in mass concentration (wet: <0.01-10⯵gâ¯m-3; dry: 9.8-69⯵gâ¯m-3), NH4+ soluble content (wet: 13-125⯵gâ¯m-3; dry: 86-323⯵gâ¯m-3) and K+ soluble content (wet: 11-168⯵gâ¯m-3; dry 60-356⯵gâ¯m-3) of the PM2.5, and O3 levels (wet: 1.4-14⯵gâ¯m-3; dry: 1.0-40⯵gâ¯m-3), indicating influence of biomass burning emissions. BTEX concentrations were low in both periods, but also increased during the dry season. A weak correlation in the time series of the organic and inorganic gaseous pollutants indicates a combination of different sources in both seasons and NO2 results suggest a spatial heterogeneity in gaseous pollutants levels beyond initial expectations.
RESUMEN
Among the new technologies developed for the heavy-duty fleet, the use of Selective Catalytic Reduction (SCR) aftertreatment system in standard Diesel engines associated with biodiesel/diesel mixtures is an alternative in use to control the legislated pollutants emission. Nevertheless, there is an absence of knowledge about the synergic behaviour of these devices and biodiesel blends regarding the emissions of unregulated substances as the Polycyclic Aromatic Hydrocarbons (PAHs) and Nitro-PAHs, both recognized for their carcinogenic and mutagenic effects on humans. Therefore, the goal of this study is the quantification of PAHs and Nitro-PAHs present to total particulate matter (PM) emitted from the Euro V engine fuelled with ultra-low sulphur diesel and soybean biodiesel in different percentages, B5 and B20. PM sampling was performed using a Euro V - SCR engine operating in European Stationary Cycle (ESC). The PAHs and Nitro-PAHs were extracted from PM using an Accelerated Solvent Extractor and quantified by GC-MS. The results indicated that the use of SCR and the largest fraction of biodiesel studied may suppress the emission of total PAHs. The Toxic Equivalent (TEQ) was lower when using 20% biodiesel, in comparison with 5% biodiesel on the SCR system, reaffirming the low toxicity emission using higher percentage biodiesel. The data also reveal that use of SCR, on its own, suppress the Nitro-PAHs compounds. In general, the use of larger fractions of biodiesel (B20) coupled with the SCR aftertreatment showed the lowest PAHs and Nitro-PAHs emissions, meaning lower toxicity and, consequently, a potential lower risk to human health. From the emission point of view, the results of this work also demonstrated the viability of the Biodiesel programs, in combination with the SCR systems, which does not require any engine adaptation and is an economical alternative for the countries (Brazil, China, Russia, India) that have not adopted Euro VI emission standards.
RESUMEN
Understanding the impact on human health during peak episodes in air pollution is invaluable for policymakers. Particles less than PM2.5 can penetrate the respiratory system, causing cardiopulmonary and other systemic diseases. Statistical regression models are usually used to assess air pollution impacts on human health. However, when there are databases missing, linear statistical regression may not process well and alternative data processing should be considered. Nonlinear Artificial Neural Networks (ANN) are not employed to research environmental health pollution even though another advantage in using ANN is that the output data can be expressed as the number of hospital admissions. This research applied ANN to assess the impact of air pollution on human health. Three well-known ANN were tested: Multilayer Perceptron (MLP), Extreme Learning Machines (ELM) and Echo State Networks (ESN), to assess the influence of PM2.5, temperature, and relative humidity on hospital admissions due to respiratory diseases. Daily PM2.5 levels were monitored, and hospital admissions for respiratory illness were obtained, from the Brazilian hospital information system for all ages during two sampling campaigns (2008-2011 and 2014-2015) in Curitiba, Brazil. During these periods, the daily number of hospital admissions ranged from 2 to 55, PM2.5 concentrations varied from 0.98 to 54.2⯵gâ¯m-3, temperature ranged from 8 to 26⯰C, and relative humidity ranged from 45 to 100%. Of the ANN used in this study, MLP gave the best results showing a significant influence of PM2.5, temperature and humidity on hospital attendance after one day of exposure. The Anova Friedman's test showed statistical difference between the appliance of each ANN model (pâ¯<â¯.001) for 1 lag day between PM2.5 exposure and hospital admission. ANN could be a more sensitive method than statistical regression models for assessing the effects of air pollution on respiratory health, and especially useful when there is limited data available.
Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Redes Neurales de la Computación , Material Particulado/análisis , Enfermedades Respiratorias/epidemiología , Contaminación del Aire/análisis , Brasil/epidemiología , Hospitalización , Humanos , Humedad , Modelos Lineales , Modelos Estadísticos , Análisis de Regresión , Trastornos Respiratorios/epidemiología , TemperaturaRESUMEN
The hydrogen sulphide (H2S) levels from wastewater treatment plants (WWTPs) in Curitiba, Brazil have been quantified for the first time. H2S generated by anaerobic decomposition of organic matter in WWTPs is a cause for concern because it is an air pollutant, which can cause eye and respiratory irritation, headaches, and nausea. Considering the requirement for WWTPs in all communities, it is necessary to assess the concentrations and effects of gases such as H2S on populations living and/or working near WWTPs. The primary objective of this study was to evaluate the indoor and outdoor concentration of H2S in the neighbourhood of two WWTPs located in Curitiba, as well as its human health impacts. Between August 2013 and March 2014 eight sampling campaigns were performed using passive samplers and the analyses were carried out by spectrophotometry, presenting mean concentrations ranging from 0.14 to 32µgm-3. Eleven points at WWTP-A reported H2S average concentrations above the WHO recommendation of 10µgm-3, and 15 points above the US EPA guideline of 2µgm-3. At WWTP-B the H2S concentration was above US EPA guideline at all the sampling points. The I/O ratio on the different sampling sites showed accumulation of indoor H2S in some instances and result in exacerbating the exposure of the residents. The highest H2S concentrations were recorded during the summer in houses located closest to the sewage treatment stations, and towards the main wind direction, showing the importance of these factors when planning a WWTP. Lifetime risk assessments of hydrogen sulphide exposure showed a significant non-carcinogenic adverse health risk for local residents and workers, especially those close to anaerobic WWTPs. The data indicated that WWTPs operated under these conditions should be recognized as a significant air pollution source, putting local populations at risk.
Asunto(s)
Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Sulfuro de Hidrógeno/análisis , Instalaciones de Eliminación de Residuos , Contaminación del Aire , Brasil , Humanos , Aguas Residuales , VientoRESUMEN
Serpentine and amphibole asbestos occur naturally in certain geologic settings worldwide, most commonly in association with ultramafic rocks, along associated faults. Ultramafic rocks have been used in Piên County, Southern Brazil for decades for the purpose of road paving in rural and urban areas, but without the awareness of their adverse environmental and health impact. The aim of this study was the chemical characterization of aerosols re-suspended in two rural roads of Piên, paved with ultramafic rocks and to estimate the pulmonary deposition of asbestos aerosols. Bulk aerosol samples were analyzed by means of X-ray fluorescence spectrometry and X-ray diffraction analysis, in order to characterize elemental composition and crystallinity. Single-particle compositions of aerosols were analyzed by computer-controlled electron-probe microanalysis, indicating the presence of a few percentages of serpentine and amphibole. Given the chemical composition and size distribution of aerosol particles, the deposition efficiency of chrysotile, a sub-group of serpentine, in two principal segments of the human respiratory system was estimated using a lung deposition model. As an important finding, almost half of the inhaled particles were calculated to be deposited in the respiratory system. Asbestos depositions were significant (â¼25 %) in the lower airways, even though the selected breathing conditions (rest situation, nose breathing) implied the lowest rate of respiratory deposition. Considering the fraction of inhalable suspended chrysotile near local roads, and the long-term exposure of humans to these aerosols, chrysotile may represent a hazard, regarding more frequent development of lung cancer in the population of the exposed region.
Asunto(s)
Asbestos Anfíboles/análisis , Asbestos Serpentinas/análisis , Aerosoles , Asbestos Anfíboles/farmacocinética , Asbestos Anfíboles/toxicidad , Asbestos Serpentinas/farmacocinética , Asbestos Serpentinas/toxicidad , Brasil , Humanos , Exposición por Inhalación , Neoplasias Pulmonares , Modelos Biológicos , Sistema Respiratorio/metabolismo , Medición de RiesgoRESUMEN
The sublethal effects of water-soluble fraction of gasoline (WSFG, 1.5 % v/v) were evaluated in the freshwater fish, Astynax altiparanae, after acute exposure (96 h) under a semi-static system. In addition, the recovery process was assessed in the fish following contaminant depuration. Recovery treatments were carried out with gradual depuration (GD), consisting of 7 days in the WSFG, followed by 8 days in clean water; and treatments with total depuration in clean water for 15 (DEP 15) and 30 days (DEP 30). The effects were evaluated through the piscine micronucleus test and by differential counting of organic defense cells. Acute exposure increased the frequency of neutrophils. In the GD treatment, the thrombocyte count and erythrocytic nuclear abnormalities (ENA) increased. In the DEP 15 treatment, there was a reduction of ENA; and following 30 days of depuration (i.e., DEP 30), the number of lymphocytes increased and the thrombocyte count remained high. These results indicate a long-term response to a condition of stress from WSFG.
Asunto(s)
Characidae/metabolismo , Gasolina/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Agua Dulce , Pruebas de Micronúcleos , Agua/química , Contaminantes Químicos del Agua/análisisRESUMEN
Although the particulate matter (PM) emissions from biodiesel fuelled engines are acknowledged to be lower than those of fossil diesel, there is a concern on the impact of PM produced by biodiesel to human health. As the oxidative potential of PM has been suggested as trigger for adverse health effects, it was measured using the Electron Spin Resonance (OP(ESR)) technique. Additionally, Energy Dispersive X-ray Fluorescence Spectroscopy (EDXRF) was employed to determine elemental concentration, and Raman Spectroscopy was used to describe the amorphous carbon character of the soot collected on exhaust PM from biodiesel blends fuelled test-bed engine, with and without Selective Catalytic Reduction (SCR). OP(ESR) results showed higher oxidative potential per kWh of PM produced from a blend of 20% soybean biodiesel and 80% ULSD (B20) engine compared with a blend of 5% soybean biodiesel and 95% ULSD (B5), whereas the SCR was able to reduce oxidative potential for each fuel. EDXRF data indicates a correlation of 0.99 between concentration of copper and oxidative potential. Raman Spectroscopy centered on the expected carbon peaks between 1100cm(-1) and 1600cm(-1) indicate lower molecular disorder for the B20 particulate matter, an indicative of a more graphitic carbon structure. The analytical techniques used in this study highlight the link between biodiesel engine exhaust and increased oxidative potential relative to biodiesel addition on fossil diesel combustion. The EDXRF analysis confirmed the prominent role of metals on free radical production. As a whole, these results suggest that 20% of biodiesel blends run without SCR may pose an increased health risk due to an increase in OH radical generation.
Asunto(s)
Contaminantes Atmosféricos/análisis , Biocombustibles/análisis , Material Particulado/análisis , Emisiones de Vehículos/análisis , CatálisisRESUMEN
The aim of this investigation was to quantify organic and inorganic gas emissions from a four-cylinder diesel engine equipped with a urea selective catalytic reduction (SCR) system. Using a bench dynamometer, the emissions from the following mixtures were evaluated using a Fourier transform infrared (FTIR) spectrometer: low-sulfur diesel (LSD), ultralow-sulfur diesel (ULSD), and a blend of 20% soybean biodiesel and 80% ULSD (B20). For all studied fuels, the use of the SCR system yielded statistically significant (p < 0.05) lower NOx emissions. In the case of the LSD and ULSD fuels, the SCR system also significantly reduced emissions of compounds with high photochemical ozone creation potential, such as formaldehyde. However, for all tested fuels, the SCR system produced significantly (p < 0.05) higher emissions of N2O. In the case of LSD, the NH3 emissions were elevated, and in the case of ULSD and B20 fuels, the non-methane hydrocarbon (NMHC) and total hydrocarbon of diesel (HCD) emissions were significantly higher.
Asunto(s)
Contaminación del Aire/prevención & control , Biocombustibles/efectos adversos , Gasolina/efectos adversos , Emisiones de Vehículos/análisis , Catálisis , Hidrocarburos/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Azufre/químicaRESUMEN
The aim of this work was to evaluate the concentrations of polycyclic aromatic hydrocarbons (PAHs) in soils to which solid shale materials (SSMs) were added as soil conditioners. The SSMs were derived from the Petrosix pyrolysis process developed by Petrobras (Brazil). An improved ultrasonic agitation method was used to extract the PAHs from the solid samples (soils amended with SSMs), and the concentrations of the compounds were determined by gas chromatography coupled to mass spectrometry (GC-MS). The procedure provided satisfactory recoveries, detection limits, and quantification limits. The two-, three-, and four-ring PAHs were most prevalent, and the highest concentration was obtained for phenanthrene (978 ± 19 µg kg(-1) in a pyrolyzed shale sample). The use of phenanthrene/anthracene and fluoranthene/pyrene ratios revealed that the PAHs were derived from petrogenic rather than pyrogenic sources. The measured PAH concentrations did not exceed national or international limit values, suggesting that the use of SSMs as soil conditioners should not cause environmental damage.
Asunto(s)
Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos/análisis , Eliminación de Residuos/métodos , Contaminantes del Suelo/análisis , Suelo/química , Brasil , Cromatografía de Gases y Espectrometría de Masas , Incineración , Minerales/análisisRESUMEN
The changes in the composition of fuels in combination with selective catalytic reduction (SCR) emission control systems bring new insights into the emission of gaseous and particulate pollutants. The major goal of our study was to quantify NOx, NO, NO2, NH3 and N2O emissions from a four-cylinder diesel engine operated with diesel and a blend of 20% soybean biodiesel. Exhaust fume samples were collected from bench dynamometer tests using a heavy-duty diesel engine equipped with SCR. The target gases were quantified by means of Fourier transform infrared spectrometry (FTIR). The use of biodiesel blend presented lower concentrations in the exhaust fumes than using ultra-low sulfur diesel. NOx and NO concentrations were 68% to 93% lower in all experiments using SCR, when compared to no exhaust aftertreatment. All fuels increased NH3 and N2O emission due to SCR, a precursor secondary aerosol, and major greenhouse gas, respectively. An AERMOD dispersion model analysis was performed on each compound results for the City of Curitiba, assumed to have a bus fleet equipped with diesel engines and SCR system, in winter and summer seasons. The health risks of the target gases were assessed using the Risk Assessment Information System For 1-h exposure of NH3, considering the use of low sulfur diesel in buses equipped with SCR, the results indicated low risk to develop a chronic non-cancer disease. The NOx and NO emissions were the lowest when SCR was used; however, it yielded the highest NH3 concentration. The current results have paramount importance, mainly for countries that have not yet adopted the Euro V emission standards like China, India, Australia, or Russia, as well as those already adopting it. These findings are equally important for government agencies to alert the need of improvements in aftertreatment technologies to reduce pollutants emissions.
Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/prevención & control , Biocombustibles , Gasolina , Vehículos a Motor , Emisiones de Vehículos/análisis , Contaminación del Aire/estadística & datos numéricos , Catálisis , China , Monitoreo del Ambiente , Medición de RiesgoRESUMEN
The mitigation of pollution released to the environment originating from the industrial sector has been the aim of all policy-makers and its importance is evident if the adverse health effects on the world population are considered. Although this concern is controversial, petroleum refinery has been linked to some adverse health effects for people living nearby. Apart from home, school is the most important indoor environment for children and there is increasing concern about the school environment and its impact on health, also in developing countries where the prevalence of pollution is higher. As most of the children spend more than 40% of their time in schools, it is critical to evaluate the pollution level in such environment. In the metropolitan region of Curitiba, South Brazil, five schools nearby industries and highways with high density traffic, were selected to characterize the aerosol and gaseous compounds indoor and outdoor of the classrooms, during 2009-2011. Size segregated aerosol samples were collected for analyses of bulk and single particle elemental profiles. They were analyzed by electron probe X-ray micro-analysis (EPXMA), and by energy-dispersive X-ray fluorescence (EDXRF), to investigate the elemental composition of individual particles and bulk samples. The concentrations of benzene, toluene, ethylbenzene, and xylene (BTEX); NO2; SO2; acetic acid; and formic acid were assessed indoor and outdoor using passive diffusion tubes. BTEX were analyzed by GC-MS and other collected gasses by ion chromatography. Individual exposition of BTEX was assessed by personal passive diffusion tubes. Results are interpreted separately and as a whole with the specific aim of identifying compounds that could affect the health of the scholars. In view of the chemical composition and size distribution of the aerosol particles, local deposition efficiencies in the children's respiratory systems were calculated, revealing the deposition of particles at extrathoracic, tracheobronchial and pulmonary levels.