Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Sci Rep ; 14(1): 7386, 2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548856

RESUMEN

This study aimed to conduct a cross-sectional data analysis of the alveolar bone mineral density (al-BMD) in 225 patients of various ages and different sexes. The al-BMD value in the mandibular incisor region was calculated using a computer-aided measurement system (DentalSCOPE) for intraoral radiography. All participants with intact teeth (101 males and 124 females; age range, 25-89 years) were divided into three age-segregated groups (25-49, 50-74, and > 75 years). Statistical differences were evaluated using the Mann-Whitney U or Kruskal-Wallis test. Males exhibited significantly greater al-BMD than females (p < 0.001). The highest means were observed in the 25-49 age group, regardless of sex (1007.90 mg/cm2 in males, 910.90 mg/cm2 in females). A 9.8% decrease in al-BMD was observed with the increase in age in males (25-49 to 50-74 years; p = 0.004); however, no further changes were seen thereafter. In females, a decreasing trend was seen throughout the lifespan, with values reaching up to 76.0% of the initial peak value (p < 0.001). Similar to other skeletal sites, the alveolar bone exhibits sex differences and undergoes a reduction in BMD via the normal aging process.


Asunto(s)
Densidad Ósea , Caracteres Sexuales , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Estudios Transversales , Radiografía , Computadores , Absorciometría de Fotón
2.
Gels ; 10(3)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38534624

RESUMEN

Novel functional biomaterials are expected to bring about breakthroughs in developing immunotherapy and regenerative medicine through their application as drug delivery systems and scaffolds. Nanogels are defined as nanoparticles with a particle size of 100 nm or less and as having a gel structure. Nanogels have a three-dimensional network structure of cross-linked polymer chains, which have a high water content, a volume phase transition much faster than that of a macrogel, and a quick response to external stimuli. As it is possible to transmit substances according to the three-dimensional mesh size of the gel, a major feature is that relatively large substances, such as proteins and nucleic acids, can be taken into the gel. Furthermore, by organizing nanogels as a building block, they can be applied as a scaffold material for tissue regeneration. This review provides a brief overview of the current developments in nanogels in general, especially drug delivery, therapeutic applications, and tissue engineering. In particular, polysaccharide-based nanogels are interesting because they have excellent complexation properties and are highly biocompatible.

3.
Dent J (Basel) ; 12(1)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38248224

RESUMEN

INTRODUCTION: Prevention of tooth loss contributes to an extended life expectancy, namely longevity. Aging-related oral hypofunction, including tooth loss, markedly increases the risks of functional disorder and mortality. Dysbiosis of the oral microbiome has recently been associated with various diseases, such as liver cirrhosis, pancreatic cancer, colorectal cancer, and inflammatory bowel disease. Therefore, the relationship between the oral microbiome and systemic health has been attracting increasing attention. In the present study, we examined oral function and the oral microbiome in the elderly in a world-leading longevity area. MATERIALS AND METHODS: An oral examination, chewing ability/tongue-lip motor function/saliva tests, and a metagenomic analysis with a 16S rRNA gene-targeting next-generation sequencer were conducted on 78 subjects aged ≥80 years. Twenty-six healthy individuals aged between 20 and 39 years were also investigated as controls. The data obtained were statistically analyzed. The protocol of the present study was approved by the Ethics Review Board of our university (ERB-C-885). RESULTS: Chewing ability, tongue-lip motor function, and saliva volume were normal in elderly subjects with a current tooth number ≥20, but were significantly lower in those with a current tooth number <20. The oral microbiome in elderly subjects with a current tooth number ≥20 and young controls differed from that in elderly subjects with a current tooth number <20. CONCLUSION: Tooth number ≥20 in elderly subjects in the longevity area contributed to the maintenance of both oral function and the diversity of the oral microbiome.

4.
Int J Mol Sci ; 24(21)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37958551

RESUMEN

Raman spectroscopy was applied to study the structural differences between herpes simplex virus Type I (HSV-1) and Epstein-Barr virus (EBV). Raman spectra were first collected with statistical validity on clusters of the respective virions and analyzed according to principal component analysis (PCA). Then, average spectra were computed and a machine-learning approach applied to deconvolute them into sub-band components in order to perform comparative analyses. The Raman results revealed marked structural differences between the two viral strains, which could mainly be traced back to the massive presence of carbohydrates in the glycoproteins of EBV virions. Clear differences could also be recorded for selected tyrosine and tryptophan Raman bands sensitive to pH at the virion/environment interface. According to the observed spectral differences, Raman signatures of known biomolecules were interpreted to link structural differences with the viral functions of the two strains. The present study confirms the unique ability of Raman spectroscopy for answering structural questions at the molecular level in virology and, despite the structural complexity of viral structures, its capacity to readily and reliably differentiate between different virus types and strains.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpes Simple , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 4 , Multiómica
5.
ACS Infect Dis ; 9(11): 2226-2251, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37850869

RESUMEN

The latest RNA genomic mutation of SARS-CoV-2 virus, termed the Omicron variant, has generated a stream of highly contagious and antibody-resistant strains, which in turn led to classifying Omicron as a variant of concern. We systematically collected Raman spectra from six Omicron subvariants available in Japan (i.e., BA.1.18, BA.2, BA.4, BA.5, XE, and BA.2.75) and applied machine-learning algorithms to decrypt their structural characteristics at the molecular scale. Unique Raman fingerprints of sulfur-containing amino acid rotamers, RNA purines and pyrimidines, tyrosine phenol ring configurations, and secondary protein structures clearly differentiated the six Omicron subvariants. These spectral characteristics, which were linked to infectiousness, transmissibility, and propensity for immune evasion, revealed evolutionary motifs to be compared with the outputs of genomic studies. The availability of a Raman "metabolomic snapshot", which was then translated into a barcode to enable a prompt subvariant identification, opened the way to rationalize in real-time SARS-CoV-2 activity and variability. As a proof of concept, we applied the Raman barcode procedure to a nasal swab sample retrieved from a SARS-CoV-2 patient and identified its Omicron subvariant by coupling a commercially available magnetic bead technology with our newly developed Raman analyses.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2/genética , Espectrometría Raman , ARN
6.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37686157

RESUMEN

The aim of this study was to elucidate the chemistry of cellular degeneration in human neuroblastoma cells upon exposure to outer-membrane vesicles (OMVs) produced by Porphyromonas gingivalis (Pg) oral bacteria by monitoring their metabolomic evolution using in situ Raman spectroscopy. Pg-OMVs are a key factor in Alzheimer's disease (AD) pathogenesis, as they act as efficient vectors for the delivery of toxins promoting neuronal damage. However, the chemical mechanisms underlying the direct impact of Pg-OMVs on cell metabolites at the molecular scale still remain conspicuously unclear. A widely used in vitro model employing neuroblastoma SH-SY5Y cells (a sub-line of the SK-N-SH cell line) was spectroscopically analyzed in situ before and 6 h after Pg-OMV contamination. Concurrently, Raman characterizations were also performed on isolated Pg-OMVs, which included phosphorylated dihydroceramide (PDHC) lipids and lipopolysaccharide (LPS), the latter in turn being contaminated with a highly pathogenic class of cysteine proteases, a key factor in neuronal cell degradation. Raman characterizations located lipopolysaccharide fingerprints in the vesicle structure and unveiled so far unproved aspects of the chemistry behind protein degradation induced by Pg-OMV contamination of SH-SY5Y cells. The observed alterations of cells' Raman profiles were then discussed in view of key factors including the formation of amyloid ß (Aß) plaques and hyperphosphorylated Tau neurofibrillary tangles, and the formation of cholesterol agglomerates that exacerbate AD pathologies.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Humanos , Porphyromonas gingivalis , Péptidos beta-Amiloides , Lipopolisacáridos , Cuerpos de Inclusión , Vesícula
7.
Medicine (Baltimore) ; 102(37): e35066, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37713859

RESUMEN

Surgical site infections (SSI) are associated with increased morbidity and mortality rates. This study aimed to investigate the ability of perioperative oral management (POM) to reduce the risk of SSI in abdominal surgery Real-world data collected from 16 university hospitals in Japan were reviewed. The medical records of consecutive 2782 patients (1750 men and 1032 women) who underwent abdominal surgery under general anesthesia at 16 university hospitals were retrospectively reviewed. Detailed information about SSI was assessed and compared between patients with and without POM in univariate and multivariate analyses. SSI were observed in 275 patients (incidence rate:9.9%), and POM was administered to 778 patients (28.0%). Univariate analyses revealed that diabetes mellitus, Eastern Cooperative Oncology Group performance status, American Society of Anesthesiologists classification, surgical site, preoperative Prognostic Nutritional Index score, POM, extent of surgery, operation time, and intraoperative blood loss were significantly associated with postoperative SSI (Chi-square or Mann-Whitney U test, P < .01). Multivariate analysis revealed that POM had significant preventive effects against postoperative SSI (estimate: -0.245, standard error: 0.080, P < .01). Surgical site, American Society of Anesthesiologists classification, and operation time were also significant and independent clinical predictors of SSI. The analysis of real-world data from 16 university hospitals revealed that, regardless of the content and degree of the problem, the addition of POM has significant beneficial effects in reducing the risk of SSI in patients who undergo abdominal surgery. Medical records from each hospital and data from the Health Care Payment Fund were collected and analyzed retrospectively.


Asunto(s)
Infección de la Herida Quirúrgica , Masculino , Humanos , Femenino , Infección de la Herida Quirúrgica/epidemiología , Infección de la Herida Quirúrgica/prevención & control , Japón/epidemiología , Estudios Retrospectivos , Universidades , Hospitales Universitarios
8.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37628838

RESUMEN

Hydrolytic reactions taking place at the surface of a silicon nitride (Si3N4) bioceramic were found to induce instantaneous inactivation of Human herpesvirus 1 (HHV-1, also known as Herpes simplex virus 1 or HSV-1). Si3N4 is a non-oxide ceramic compound with strong antibacterial and antiviral properties that has been proven safe for human cells. HSV-1 is a double-stranded DNA virus that infects a variety of host tissues through a lytic and latent cycle. Real-time reverse transcription (RT)-polymerase chain reaction (PCR) tests of HSV-1 DNA after instantaneous contact with Si3N4 showed that ammonia and its nitrogen radical byproducts, produced upon Si3N4 hydrolysis, directly reacted with viral proteins and fragmented the virus DNA, irreversibly damaging its structure. A comparison carried out upon testing HSV-1 against ZrO2 particles under identical experimental conditions showed a significantly weaker (but not null) antiviral effect, which was attributed to oxygen radical influence. The results of this study extend the effectiveness of Si3N4's antiviral properties beyond their previously proven efficacy against a large variety of single-stranded enveloped and non-enveloped RNA viruses. Possible applications include the development of antiviral creams or gels and oral rinses to exploit an extremely efficient, localized, and instantaneous viral reduction by means of a safe and more effective alternative to conventional antiviral creams. Upon incorporating a minor fraction of micrometric Si3N4 particles into polymeric matrices, antiherpetic devices could be fabricated, which would effectively impede viral reactivation and enable high local effectiveness for extended periods of time.


Asunto(s)
Herpesvirus Humano 1 , Humanos , Compuestos de Silicona/farmacología , Antivirales/farmacología , ADN Viral
9.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37047667

RESUMEN

This study probed in vitro the mechanisms of competition/coexistence between Streptococcus sanguinis (known for being correlated with health in the oral cavity) and Streptococcus mutans (responsible for aciduric oral environment and formation of caries) by means of quantitative Raman spectroscopy and imaging. In situ Raman assessments of live bacterial culture/coculture focusing on biofilm exopolysaccharides supported the hypothesis that both species engaged in antagonistic interactions. Experiments of simultaneous colonization always resulted in coexistence, but they also revealed fundamental alterations of the biofilm with respect to their water-insoluble glucan structure. Raman spectra (collected at fixed time but different bacterial ratios) showed clear changes in chemical bonds in glucans, which pointed to an action by Streptococcus sanguinis to discontinue the impermeability of the biofilm constructed by Streptococcus mutans. The concurrent effects of glycosidic bond cleavage in water-insoluble α - 1,3-glucan and oxidation at various sites in glucans' molecular chains supported the hypothesis that secretion of oxygen radicals was the main "chemical weapon" used by Streptococcus sanguinis in coculture.


Asunto(s)
Caries Dental , Streptococcus sanguis , Humanos , Streptococcus mutans , Biopelículas , Boca/microbiología , Glucanos/farmacología
10.
Molecules ; 28(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37049698

RESUMEN

Oral mucositis is a typical adverse effect of chemotherapy, causing oral pain that significantly reduces the patient's quality of life. ß-cryptoxanthin (ß-cry) is a carotenoid abundant in citrus fruits with antioxidant and anti-inflammatory effects. However, the ß-cry effect on oral mucositis remains unclear. We investigated the effects of 5-fluorouracil (5-FU) and ß-cry on human normal oral mucosal keratinocytes (hOMK). hOMK was seeded on a culture plate and cultured with 5-FU and ß-cry. The cell number, mRNA expression of inflammatory cytokines and matrix metalloproteinases (MMPs), and production of inflammatory cytokines in hOMK were evaluated. Additionally, the cell count and inflammatory cytokine production were analyzed when hOMK was co-stimulated with Porphyromonas gingivalis lipopolysaccharide (P. gingivalis LPS) in addition to 5-FU. The numbers of hOMK significantly reduced with 5-FU stimulation, whereas it increased with ß-cry treatment. mRNA expression of interleukin (IL)-6, IL-8, metalloproteinase (MMP)-2, and MMP-9 and protein production of IL-6 and IL-8 in hOMK were augmented on 5-FU stimulation. Simultaneously, ß-cry treatment significantly suppressed IL-8 and MMP-9 mRNA expression, and IL-8 production was induced on 5-FU stimulation. Co-stimulation with P. gingivalis LPS and 5-FU enhanced IL-6 and IL-8 production in hOMK. ß-cry could enhance cell proliferation and suppress 5-FU-induced expression of inflammatory cytokines and MMP in hOMK. Thus, ß-cry can alleviate the symptoms of chemotherapy-induced oral mucositis, and its combination with oral care is effective in managing oral mucositis.


Asunto(s)
Citocinas , Estomatitis , Humanos , Citocinas/metabolismo , Fluorouracilo/efectos adversos , beta-Criptoxantina/efectos adversos , Interleucina-6/genética , Metaloproteinasa 9 de la Matriz , Lipopolisacáridos/efectos adversos , Interleucina-8 , Calidad de Vida , Estomatitis/inducido químicamente , Estomatitis/tratamiento farmacológico , Queratinocitos/metabolismo , ARN Mensajero , Antiinflamatorios/efectos adversos
11.
J Funct Biomater ; 13(4)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36412841

RESUMEN

The microstructural and molecular-scale variations induced by laser irradiation treatment on human teeth enamel in comparison with synthetic hydroxyapatite (HAp) were examined through Raman microprobe spectroscopy as a function of irradiation power. The results demonstrated that laser irradiation could modify stoichiometry, microstructure, and the population of crystallographic defects, as well as the hardness of the materials. These modifications showed strong dependences on both laser power and initial nonstoichiometric structure (defective content of HPO4), because of the occurrence of distinct reactions and structural reconstruction. The reported observations can redirect future trends in tooth whitening by laser treatment and the production of HAp coatings because of the important role of stoichiometric defects.

12.
Int J Mol Sci ; 23(19)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36233043

RESUMEN

This study targets on-site/real-time taxonomic identification and metabolic profiling of seven different Candida auris clades/subclades by means of Raman spectroscopy and imaging. Representative Raman spectra from different Candida auris samples were systematically deconvoluted by means of a customized machine-learning algorithm linked to a Raman database in order to decode structural differences at the molecular scale. Raman analyses of metabolites revealed clear differences in cell walls and membrane structure among clades/subclades. Such differences are key in maintaining the integrity and physical strength of the cell walls in the dynamic response to external stress and drugs. It was found that Candida cells use the glucan structure of the extracellular matrix, the degree of α-chitin crystallinity, and the concentration of hydrogen bonds between its antiparallel chains to tailor cell walls' flexibility. Besides being an effective ploy in survivorship by providing stiff shields in the α-1,3-glucan polymorph, the α-1,3-glycosidic linkages are also water-insoluble, thus forming a rigid and hydrophobic scaffold surrounded by a matrix of pliable and hydrated ß-glucans. Raman analysis revealed a variety of strategies by different clades to balance stiffness, hydrophobicity, and impermeability in their cell walls. The selected strategies lead to differences in resistance toward specific environmental stresses of cationic/osmotic, oxidative, and nitrosative origins. A statistical validation based on principal component analysis was found only partially capable of distinguishing among Raman spectra of clades and subclades. Raman barcoding based on an algorithm converting spectrally deconvoluted Raman sub-bands into barcodes allowed for circumventing any speciation deficiency. Empowered by barcoding bioinformatics, Raman analyses, which are fast and require no sample preparation, allow on-site speciation and real-time selection of appropriate treatments.


Asunto(s)
Candidiasis , beta-Glucanos , Antifúngicos/farmacología , Candida auris , Quitina , Glucanos , Agua
13.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35897669

RESUMEN

This study presents a set of vibrational characterizations on a nanogel-cross-linked porous freeze-dried gel (NanoCliP-FD gel) scaffold for tissue engineering and regenerative therapy. This scaffold is designed for the in vitro culture of high-quality cartilage tissue to be then transplanted in vivo to enable recovery from congenital malformations in the maxillofacial area or crippling jaw disease. The three-dimensional scaffold for in-plate culture is designed with interface chemistry capable of stimulating cartilage formation and maintaining its structure through counteracting the dedifferentiation of mesenchymal stem cells (MSCs) during the formation of cartilage tissue. The developed interface chemistry enabled high efficiency in both growth rate and tissue quality, thus satisfying the requirements of large volumes, high matrix quality, and superior mechanical properties needed in cartilage transplants. We characterized the cartilage tissue in vitro grown on a NanoCliP-FD gel scaffold by human periodontal ligament-derived stem cells (a type of MSC) with cartilage grown by the same cells and under the same conditions on a conventional (porous) atelocollagen scaffold. The cartilage tissues produced by the MSCs on different scaffolds were comparatively evaluated by immunohistochemical and spectroscopic analyses. Cartilage differentiation occurred at a higher rate when MSCs were cultured on the NanoCliP-FD gel scaffold compared to the atelocollagen scaffold, and produced a tissue richer in cartilage matrix. In situ spectroscopic analyses revealed the cell/scaffold interactive mechanisms by which the NanoCliP-FD gel scaffold stimulated such increased efficiency in cartilage matrix formation. In addition to demonstrating the high potential of human periodontal ligament-derived stem cell cultures on NanoCliP-FD gel scaffolds in regenerative cartilage therapy, the present study also highlights the novelty of Raman spectroscopy as a non-destructive method for the concurrent evaluation of matrix quality and cell metabolic response. In situ Raman analyses on living cells unveiled for the first time the underlying physiological mechanisms behind such improved chondrocyte performance.


Asunto(s)
Cartílago , Andamios del Tejido , Cartílago/metabolismo , Células Cultivadas , Humanos , Nanogeles , Análisis Espectral , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
14.
ACS Infect Dis ; 8(8): 1563-1581, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35819780

RESUMEN

Raman spectroscopy uncovered molecular scale markers of the viral structure of the SARS-CoV-2 Delta variant and related viral inactivation mechanisms at the biological interface with silicon nitride (Si3N4) bioceramics. A comparison of Raman spectra collected on the TY11-927 variant (lineage B.1.617.2; simply referred to as the Delta variant henceforth) with those of the JPN/TY/WK-521 variant (lineage B.1.617.1; referred to as the Kappa variant or simply as the Japanese isolate henceforth) revealed the occurrence of key mutations of the spike receptor together with profound structural differences in the molecular structure/symmetry of sulfur-containing amino acid and altered hydrophobic interactions of the tyrosine residue. Additionally, different vibrational fractions of RNA purines and pyrimidines and dissimilar protein secondary structures were also recorded. Despite mutations, hydrolytic reactions at the surface of silicon nitride (Si3N4) bioceramics induced instantaneous inactivation of the Delta variant at the same rate as that of the Kappa variant. Contact between virions and micrometric Si3N4 particles yielded post-translational deimination of arginine spike residues, methionine sulfoxidation, tyrosine nitration, and oxidation of RNA purines to form formamidopyrimidines. Si3N4 bioceramics proved to be a safe and effective inorganic compound for instantaneous environmental sanitation.


Asunto(s)
COVID-19 , Espectrometría Raman , Cerámica/química , Cerámica/farmacología , Humanos , Purinas , ARN , SARS-CoV-2/genética , Compuestos de Silicona , Tirosina
15.
Front Microbiol ; 13: 896359, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35694304

RESUMEN

The multidrug-resistant Candida auris often defies treatments and presently represents a worldwide public health threat. Currently, the ergosterol-targeting Amphotericin B (AmB) and the DNA/RNA-synthesis inhibitor 5-flucytosine (5-FC) are the two main drugs available for first-line defense against life-threatening Candida auris infections. However, important aspects of their mechanisms of action require further clarification, especially regarding metabolic reactions of yeast cells. Here, we applied Raman spectroscopy empowered with specifically tailored machine-learning algorithms to monitor and to image in situ the susceptibility of two Candida auris clades to different antifungal drugs (LSEM 0643 or JCM15448T, belonging to the East Asian Clade II; and, LSEM 3673 belonging to the South African Clade III). Raman characterizations provided new details on the mechanisms of action against Candida auris Clades II and III, while also unfolding differences in their metabolic reactions to different drugs. AmB treatment induced biofilm formation in both clades, but the formed biofilms showed different structures: a dense and continuous biofilm structure in Clade II, and an extra-cellular matrix with a "fluffy" and discontinuous structure in Clade III. Treatment with 5-FC caused no biofilm formation but yeast-to-hyphal or pseudo-hyphal morphogenesis in both clades. Clade III showed a superior capacity in reducing membrane permeability to the drug through chemically tailoring chitin structure with a high degree of acetylation and fatty acids networks with significantly elongated chains. This study shows the suitability of the in situ Raman method in characterizing susceptibility and stress response of different C. auris clades to antifungal drugs, thus opening a path to identifying novel clinical solutions counteracting the spread of these alarming pathogens.

16.
J Inorg Biochem ; 234: 111884, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35716550

RESUMEN

In this study, we monitored the effect of Al3+ ions on mesenchymal cells (KUSA-A1) and human fibroblasts (NHDF) by means of in vitro experiments by culturing the cells with addition of small concentrations of aluminum ions (i.e., 0.1, 1, 10, and 100 ppm). Bone formation test was then conducted using KUSA-A1. Small concentrations of aluminum ions delayed but did not completely inhibit cell proliferation. The amount of bone tissue decreased as the concentration of Al3+ increased and crystallinity changes were also detected by Raman spectroscopic experiments. Moreover, Al3+ ions greatly affected both structure and chemistry of bone tissues with mineral nodules becoming larger and atomic substitution of Ca with Al in bone tissue being more preponderant with increasing Al3+ concentration. Such effects in turn impaired the balance between mineral and collagen in the formed bone tissue.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Aluminio/toxicidad , Colágeno , Humanos , Iones/farmacología
17.
Int J Mol Sci ; 23(10)2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35628169

RESUMEN

Oral candidiasis, a common opportunistic infection of the oral cavity, is mainly caused by the following four Candida species (in decreasing incidence rate): Candida albicans, Candida glabrata, Candida tropicalis, and Candida krusei. This study offers in-depth Raman spectroscopy analyses of these species and proposes procedures for an accurate and rapid identification of oral yeast species. We first obtained average spectra for different Candida species and systematically analyzed them in order to decode structural differences among species at the molecular scale. Then, we searched for a statistical validation through a chemometric method based on principal component analysis (PCA). This method was found only partially capable to mechanistically distinguish among Candida species. We thus proposed a new Raman barcoding approach based on an algorithm that converts spectrally deconvoluted Raman sub-bands into barcodes. Barcode-assisted Raman analyses could enable on-site identification in nearly real-time, thus implementing preventive oral control, enabling prompt selection of the most effective drug, and increasing the probability to interrupt disease transmission.


Asunto(s)
Candida , Candidiasis Bucal , Candida/química , Candida/genética , Candida albicans , Candidiasis Bucal/diagnóstico , Quimiometría , Espectrometría Raman/métodos
18.
Biomed Mater ; 17(4)2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35504268

RESUMEN

Poly-caprolactone is one of the most promising biocompatible polymers on the market, in particular for temporary devices that are not subjected to high physiological loads. Even if completely resorbable in various biological environments, poly-caprolactione does not play any specific biological role in supporting tissue regeneration and for this reason has a limited range of possible applications. In this preliminary work, for the first time l-dopa and fibroin have been combined with electrospun poly-caprolactone fibers in order to induce bioactive effects and, in particular, stimulate the proliferation, adhesion and osteoconduction of the polymeric fibers. Results showed that addition of low-molecular weight fibroin reduces the mechanical strength of the fibers while promoting the formation of mineralized deposits, when testedin vitrowith KUSA-A1 mesenchymal cells. l-dopa, on the other hand, improved the mechanical properties and stimulated the formation of agglomerates of mineralized deposits containing calcium and phosphorous with high specific volume. The combination of the two substances resulted in good mechanical properties and higher amounts of mineralized deposits formedin vitro.


Asunto(s)
Fibroínas , Nanofibras , Regeneración Ósea , Levodopa , Poliésteres/farmacología , Polímeros , Ingeniería de Tejidos/métodos , Andamios del Tejido
19.
Adv Sci (Weinh) ; 9(3): e2103287, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34877818

RESUMEN

The multiple mutations of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus have created variants with structural differences in both their spike and nucleocapsid proteins. While the functional relevance of these mutations is under continuous scrutiny, current findings have documented their detrimental impact in terms of affinity with host receptors, antibody resistance, and diagnostic sensitivity. Raman spectra collected on two British variant sub-types found in Japan (QK002 and QHN001) are compared with that of the original Japanese isolate (JPN/TY/WK-521), and found bold vibrational differences. These included: i) fractions of sulfur-containing amino acid rotamers, ii) hydrophobic interactions of tyrosine phenol ring, iii) apparent fractions of RNA purines and pyrimidines, and iv) protein secondary structures. Building upon molecular scale results and their statistical validations, the authors propose to represent virus variants with a barcode specially tailored on Raman spectrum. Raman spectroscopy enables fast identification of virus variants, while the Raman barcode facilitates electronic recordkeeping and translates molecular characteristics into information rapidly accessible by users.


Asunto(s)
Prueba de COVID-19 , COVID-19/diagnóstico , Proteínas de la Nucleocápside/química , SARS-CoV-2/química , Espectrometría Raman , Glicoproteína de la Espiga del Coronavirus/química , Humanos , Proteínas de la Nucleocápside/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Reino Unido
20.
Front Microbiol ; 12: 769597, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867902

RESUMEN

Invasive fungal infections caused by yeasts of the genus Candida carry high morbidity and cause systemic infections with high mortality rate in both immunocompetent and immunosuppressed patients. Resistance rates against antifungal drugs vary among Candida species, the most concerning specie being Candida auris, which exhibits resistance to all major classes of available antifungal drugs. The presently available identification methods for Candida species face a severe trade-off between testing speed and accuracy. Here, we propose and validate a machine-learning approach adapted to Raman spectroscopy as a rapid, precise, and labor-efficient method of clinical microbiology for C. auris identification and drug efficacy assessments. This paper demonstrates that the combination of Raman spectroscopy and machine learning analyses can provide an insightful and flexible mycology diagnostic tool, easily applicable on-site in the clinical environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA