Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Kidney Int Rep ; 9(7): 2180-2188, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39081731

RESUMEN

Introduction: Methamphetamine (METH) is one of the most used drugs of abuse worldwide. However, there are few reports and series examining the toxic kidney effects of METH, and associated histopathological changes are not well-described. Methods: We retrospectively identified 112 patients with a history significant for METH abuse, of whom 62 were using METH-only and 60 were using METH plus other drugs of abuse. Results: In the METH-only cohort, the mean age was 41 years (interquartile range [IQR]: 33-49) and most (76%) were male. Almost all cases (97%) showed evidence of kidney dysfunction at the time of biopsy. Of the cases, 65% had proteinuria, of which 53% were nephrotic range and 10% had nephrotic syndrome. The most common biopsy diagnosis was acute tubular necrosis (ATN) (66%), of which 19% had myoglobin casts; followed by focal segmental glomerulosclerosis (FSGS) in 53% (not otherwise specified [NOS] in 76% and collapsing FSGS [cFSGS] in 18%). Biopsy findings also include tubulointerstitial nephritis (TIN) (37%), thrombotic microangiopathy (TMA) (24%), and diabetic glomerulosclerosis (DG) (31%). Glomerulonephritis (GN) was identified in one-third of cases, the most common of which were infection-related GN (IRGN) (15%) and IgA nephropathy (IgAN) (11%). Of those with GN, 64% had underlying infection. Of interest, there was increased association for myoglobinuric ATN in those with concurrent ethanol-abuse (P = 0.002). Moreover, the METH-only patients were more likely to have DG compared to those with multiple substance-use (P = 0.01). More than half of the patients demonstrated at least moderate to severe tubulointerstitial scarring and marked hypertensive vascular disease. Conclusion: Most patients with METH-use present with acute kidney injury (AKI) and often have proteinuria associated with a wide spectrum of renal pathology.

2.
Virchows Arch ; 485(2): 299-306, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38877360

RESUMEN

In papillary renal neoplasm with reverse polarity (PRNRP), the status of chromosomal copy number alterations, especially chromosomes 7/17 gain and chromosome Y loss, has remained controversial. In the literatures, there is a discrepancy among the results of chromosomal alteration in PRNRP depending on the analytical methods. Here, we comprehensively analyzed the status of chromosomal abnormalities in PRNRP. Nineteen PRNRP cases were analyzed by fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC), five of which were additionally subjected to array-based comparative genomic hybridization (aCGH) analysis. Fifteen cases of PRCC were used as controls. From the aCGH results, no genome copy number abnormalities were found in the five PRNRP cases. By FISH, numbers of nuclei with abnormal chromosomal signals in PRNRP (centromere 7 gain: 11-21% of nuclei, centromere 17 gain: 11% of nuclei, centromere Y loss: 14-31% of nuclei) were similar to those in non-neoplastic tubular cells (centromere 7 gain: 11-15% of nuclei, centromere 17 gain: 12-15% of nuclei, centromere Y loss: 13-45% of nuclei). c-MET immunohistochemical overexpression, a substitute marker for chromosome 7 trisomy, was observed in 0 of 19 PRNRP cases, consistent with the analyses by aCGH and NGS regarding chromosome 7 gain. Taken together, the frequency of chromosomal alterations in PRNRP is similar to that in non-neoplastic tubular cells, and lower than that in PRCC. Our data suggest that PRNRP has a different tumorigenesis and is a distinct entity from PRCC.


Asunto(s)
Cromosomas Humanos Par 17 , Cromosomas Humanos Par 7 , Cromosomas Humanos Y , Hibridación Fluorescente in Situ , Neoplasias Renales , Humanos , Neoplasias Renales/genética , Neoplasias Renales/patología , Masculino , Persona de Mediana Edad , Femenino , Cromosomas Humanos Par 7/genética , Anciano , Cromosomas Humanos Par 17/genética , Cromosomas Humanos Y/genética , Adulto , Hibridación Genómica Comparativa , Inmunohistoquímica , Aberraciones Cromosómicas , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Variaciones en el Número de Copia de ADN
3.
J Biol Chem ; 300(6): 107388, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38763333

RESUMEN

As part of the classical renin-angiotensin system, the peptidase angiotensin-converting enzyme (ACE) makes angiotensin II which has myriad effects on systemic cardiovascular function, inflammation, and cellular proliferation. Less well known is that macrophages and neutrophils make ACE in response to immune activation which has marked effects on myeloid cell function independent of angiotensin II. Here, we discuss both classical (angiotensin) and nonclassical functions of ACE and highlight mice called ACE 10/10 in which genetic manipulation increases ACE expression by macrophages and makes these mice much more resistant to models of tumors, infection, atherosclerosis, and Alzheimer's disease. In another model called NeuACE mice, neutrophils make increased ACE and these mice are much more resistant to infection. In contrast, ACE inhibitors reduce neutrophil killing of bacteria in mice and humans. Increased expression of ACE induces a marked increase in macrophage oxidative metabolism, particularly mitochondrial oxidation of lipids, secondary to increased peroxisome proliferator-activated receptor α expression, and results in increased myeloid cell ATP. ACE present in sperm has a similar metabolic effect, and the lack of ACE activity in these cells reduces both sperm motility and fertilization capacity. These nonclassical effects of ACE are not due to the actions of angiotensin II but to an unknown molecule, probably a peptide, that triggers a profound change in myeloid cell metabolism and function. Purifying and characterizing this peptide could offer a new treatment for several diseases and prove potentially lucrative.


Asunto(s)
Células Mieloides , Peptidil-Dipeptidasa A , Animales , Humanos , Peptidil-Dipeptidasa A/metabolismo , Peptidil-Dipeptidasa A/genética , Células Mieloides/metabolismo , Células Mieloides/inmunología , Células Mieloides/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Ratones , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/efectos de los fármacos , Sistema Renina-Angiotensina/efectos de los fármacos , Angiotensina II/farmacología
4.
Science ; 383(6685): eadd6371, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38386758

RESUMEN

The steps governing healing with or without fibrosis within the same microenvironment are unclear. After acute kidney injury (AKI), injured proximal tubular epithelial cells activate SOX9 for self-restoration. Using a multimodal approach for a head-to-head comparison of injury-induced SOX9 lineages, we identified a dynamic SOX9 switch in repairing epithelia. Lineages that regenerated epithelia silenced SOX9 and healed without fibrosis (SOX9on-off). By contrast, lineages with unrestored apicobasal polarity maintained SOX9 activity in sustained efforts to regenerate, which were identified as a SOX9on-on Cadherin6pos cell state. These reprogrammed cells generated substantial single-cell WNT activity to provoke a fibroproliferative response in adjacent fibroblasts, driving AKI to chronic kidney disease. Transplanted human kidneys displayed similar SOX9/CDH6/WNT2B responses. Thus, we have uncovered a sensor of epithelial repair status, the activity of which determines regeneration with or without fibrosis.


Asunto(s)
Lesión Renal Aguda , Túbulos Renales Proximales , Riñón , Insuficiencia Renal Crónica , Factor de Transcripción SOX9 , Animales , Humanos , Ratones , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Células Epiteliales , Fibrosis , Riñón/patología , Regeneración , Insuficiencia Renal Crónica/genética , Insuficiencia Renal Crónica/patología , Factor de Transcripción SOX9/genética , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/metabolismo
5.
Lab Invest ; 103(9): 100190, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37268107

RESUMEN

Glomerulonephritis (GN) is a group of inflammatory diseases and an important cause of morbidity and mortality worldwide. The initiation of the inflammatory process is quite different for each type of GN; however, each GN is characterized commonly and variably by acute inflammation with neutrophils and macrophages and crescent formation, leading to glomerular death. Toll-like receptor (TLR) 7 is a sensor for self-RNA and implicated in the pathogenesis of human and murine GN. Here, we show that TLR7 exacerbates glomerular injury in nephrotoxic serum nephritis (NTN), a murine model of severe crescentic GN. TLR7-/- mice were resistant to NTN, although TLR7-/- mice manifested comparable immune-complex deposition to wild-type mice without significant defects in humoral immunity, suggesting that endogenous TLR7 ligands accelerate glomerular injury. TLR7 was expressed exclusively in macrophages in glomeruli in GN but not in glomerular resident cells or neutrophils. Furthermore, we discovered that epidermal growth factor receptor (EGFR), a receptor-type tyrosine kinase, is essential for TLR7 signaling in macrophages. Mechanistically, EGFR physically interacted with TLR7 upon TLR7 stimulation, and EGFR inhibitor completely blocked the phosphorylation of TLR7 tyrosine residue(s). EGFR inhibitor attenuated glomerular damage in wild-type mice, and no additional glomerular protective effects by EGFR inhibitor were observed in TLR7-/- mice. Finally, mice lacking EGFR in macrophages were resistant to NTN. This study clearly demonstrated that EGFR-dependent TLR7 signaling in macrophages is essential for glomerular injury in crescentic GN.


Asunto(s)
Factor de Crecimiento Epidérmico , Glomerulonefritis , Ratones , Humanos , Animales , Receptor Toll-Like 7 , Receptores ErbB , Macrófagos/metabolismo
6.
Front Immunol ; 14: 1304086, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38288124

RESUMEN

During transfusion of red blood cells (RBCs), recipients are exposed to both ABO and non-ABO 'minor' antigens. RBC donor units and recipient RBCs are not routinely matched for non-ABO antigens. Thus, recipients are exposed to many RBC alloantigens that can lead to RBC alloantibody production and subsequent clinically significant hemolysis. RBC alloantibodies also significantly limit the provision of compatible RBC units for recipients. Prior studies indicate that the frequency of RBC alloimmunization is increased during inflammatory responses and in patients with autoimmune diseases. Still, mechanisms contributing to alloimmune responses in patients with autoimmunity are not well understood. More than half of adult patients with systemic lupus erythematosus (SLE) produce type 1 interferons (IFNα/ß) and express IFNα/ß stimulated genes (ISGs). Previously, we reported that IFNα/ß promote RBC alloimmune responses in the pristane mouse model, which develops a lupus-like phenotype that is dependent on IFNα/ß signaling. However, it is unclear whether IFNα/ß or the lupus-like phenotype induces alloimmunization in lupus models. Therefore, we tested the hypothesis that IFNα/ß promotes RBC alloimmune responses in lupus by examining alloimmune responses in IFNα/ß-independent (MRL-lpr) and IFNα/ß-dependent (pristane) lupus models. Whereas pristane treatment significantly induced interferon-stimulated genes (ISGs), MRL-lpr mice produced significantly lower levels that were comparable to levels in untreated WT mice. Transfusion of murine RBCs that express the KEL antigen led to anti-KEL IgG production by pristane-treated WT mice. However, MRL-lpr mice produced minimal levels of anti-KEL IgG. Treatment of MRL-lpr mice with recombinant IFNα significantly enhanced alloimmunization. Collectively, results indicate that a lupus-like phenotype in pre-clinical models is not sufficient to induce RBC alloantibody production, and IFNα/ß gene signatures may be responsible for RBC alloimmune responses in lupus mouse models. If these findings are extended to alternate pre-clinical models and clinical studies, patients with SLE who express an IFNα/ß gene signature may have an increased risk of developing RBC alloantibodies and may benefit from more personalized transfusion protocols.


Asunto(s)
Isoanticuerpos , Lupus Eritematoso Sistémico , Terpenos , Humanos , Ratones , Animales , Ratones Endogámicos MRL lpr , Eritrocitos , Modelos Animales de Enfermedad , Interferones , Inmunoglobulina G
7.
Sci Adv ; 8(38): eabq0866, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36129975

RESUMEN

Organoids serve as a novel tool for disease modeling in three-dimensional multicellular contexts. Static organoids, however, lack the requisite biophysical microenvironment such as fluid flow, limiting their ability to faithfully recapitulate disease pathology. Here, we unite organoids with organ-on-a-chip technology to unravel disease pathology and develop therapies for autosomal recessive polycystic kidney disease. PKHD1-mutant organoids-on-a-chip are subjected to flow that induces clinically relevant phenotypes of distal nephron dilatation. Transcriptomics discover 229 signal pathways that are not identified by static models. Mechanosensing molecules, RAC1 and FOS, are identified as potential therapeutic targets and validated by patient kidney samples. On the basis of this insight, we tested two U.S. Food and Drug Administration-approved and one investigational new drugs that target RAC1 and FOS in our organoid-on-a-chip model, which suppressed cyst formation. Our observations highlight the vast potential of organoid-on-a-chip models to elucidate complex disease mechanisms for therapeutic testing and discovery.


Asunto(s)
Riñón Poliquístico Autosómico Recesivo , Descubrimiento de Drogas , Drogas en Investigación , Humanos , Dispositivos Laboratorio en un Chip , Organoides/metabolismo , Riñón Poliquístico Autosómico Recesivo/genética , Riñón Poliquístico Autosómico Recesivo/metabolismo , Riñón Poliquístico Autosómico Recesivo/patología
8.
J Clin Invest ; 132(20)2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-35943814

RESUMEN

To understand how kidney donation leads to an increased risk of preeclampsia, we studied pregnant outbred mice with prior uninephrectomy and compared them with sham-operated littermates carrying both kidneys. During pregnancy, uninephrectomized (UNx) mice failed to achieve a physiological increase in the glomerular filtration rate and during late gestation developed hypertension, albuminuria, glomerular endothelial damage, and excess placental production of soluble fms-like tyrosine kinase 1 (sFLT1), an antiangiogenic protein implicated in the pathogenesis of preeclampsia. Maternal hypertension in UNx mice was associated with low plasma volumes, an increased rate of fetal resorption, impaired spiral artery remodeling, and placental ischemia. To evaluate potential mechanisms, we studied plasma metabolite changes using mass spectrometry and noted that l-kynurenine, a metabolite of l-tryptophan, was upregulated approximately 3-fold during pregnancy when compared with prepregnant concentrations in the same animals, consistent with prior reports suggesting a protective role for l-kynurenine in placental health. However, UNx mice failed to show upregulation of l-kynurenine during pregnancy; furthermore, when UNx mice were fed l-kynurenine in drinking water throughout pregnancy, their preeclampsia-like state was rescued, including a reversal of placental ischemia and normalization of sFLT1 levels. In aggregate, we provide a mechanistic basis for how impaired renal reserve and the resulting failure to upregulate l-kynurenine during pregnancy can lead to impaired placentation, placental hypoperfusion, an antiangiogenic state, and subsequent preeclampsia.


Asunto(s)
Hipertensión , Riñón , Nefrectomía , Preeclampsia , Animales , Femenino , Humanos , Hipertensión/metabolismo , Isquemia/metabolismo , Riñón/metabolismo , Riñón/fisiopatología , Quinurenina/metabolismo , Ratones , Nefrectomía/efectos adversos , Placenta/metabolismo , Factor de Crecimiento Placentario , Preeclampsia/metabolismo , Embarazo , Triptófano/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
9.
Am J Physiol Renal Physiol ; 323(4): F411-F424, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35979968

RESUMEN

While angiotensin-converting enzyme (ACE) regulates blood pressure by producing angiotensin II as part of the renin-angiotensin system, we recently reported that elevated ACE in neutrophils promotes an effective immune response and increases resistance to infection. Here, we investigate if such neutrophils protect against renal injury in immune complex (IC)-mediated crescentic glomerulonephritis (GN) through complement. Nephrotoxic serum nephritis (NTN) was induced in wild-type and NeuACE mice that overexpress ACE in neutrophils. Glomerular injury of NTN in NeuACE mice was attenuated with much less proteinuria, milder histological injury, and reduced IC deposits, but presented with more glomerular neutrophils in the early stage of the disease. There were no significant defects in T and B cell functions in NeuACE mice. NeuACE neutrophils exhibited enhanced IC uptake with elevated surface expression of FcγRII/III and complement receptor CR1/2. IC uptake in neutrophils was enhanced by NeuACE serum containing elevated complement C3b. Given no significant complement activation by ACE, this suggests that neutrophil ACE indirectly preactivates C3 and that the C3b-CR1/2 axis and elevated FcγRII/III play a central role in IC elimination by neutrophils, resulting in reduced glomerular injury. The present study identified a novel renoprotective role of ACE in glomerulonephritis; elevated neutrophilic ACE promotes elimination of locally formed ICs in glomeruli via C3b-CR1/2 and FcγRII/III, ameliorating glomerular injury.NEW & NOTEWORTHY We studied immune complex (IC)-mediated crescentic glomerulonephritis in NeuACE mice that overexpress ACE only in neutrophils. Such mice show no significant defects in humoral immunity but strongly resist nephrotoxic serum nephritis (less proteinuria, milder histological damage, reduced IC deposits, and more glomerular neutrophils). NeuACE neutrophils enhanced IC uptake via increased surface expression of CR1/2 and FcgRII/III, as well as elevated serum complement C3b. These results suggest neutrophil ACE as a novel approach to reducing glomerulonephritis.


Asunto(s)
Glomerulonefritis , Nefritis , Angiotensina II/metabolismo , Animales , Complejo Antígeno-Anticuerpo/metabolismo , Complemento C3b/metabolismo , Glomerulonefritis/metabolismo , Ratones , Nefritis/metabolismo , Neutrófilos/metabolismo , Proteinuria/metabolismo
10.
Clin Sci (Lond) ; 136(10): 715-731, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35502764

RESUMEN

Podocyte damage and loss are the early event in the development of focal segmental glomerulosclerosis (FSGS). Podocytes express angiotensin II type-2-receptor (AT2R), which may play a key role in maintaining kidney integrity and function. Here, we examined the effects of AT2R deletion and AT2R agonist compound 21 (C21) on the evolution of FSGS. FSGS was induced by adriamycin (ADR) injection in both male wild-type (WT) and AT2R knockout (KO) mice. C21 was administered to WT-FSGS mice either one day before or 7 days after ADR (Pre-C21 or Post-C21), using two doses of C21 at either 0.3 (low dose, LD) or 1.0 (high dose, HD) mg/kg/day. ADR-induced FSGS was more severe in AT2RKO mice compared with WT-FSGS mice, and included profound podocyte loss, glomerular fibrosis, and albuminuria. Glomerular cathepsin L expression increased more in AT2RKO-FSGS than in WT-FSGS mice. C21 treatment ameliorated podocyte injury, most significantly in the Pre C21-HD group, and inhibited glomerular cathepsin L expression. In vitro, Agtr2 knock-down in mouse podocyte cell line given ADR confirmed the in vivo data. Mechanistically, C21 inhibited cathepsin L expression, which protected synaptopodin from destruction and stabilized actin cytoskeleton. C21 also prevented podocyte apoptosis. In conclusion, AT2R activation by C21 ameliorated ADR-induced podocyte injury in mice by the inhibition of glomerular cathepsin L leading to the maintenance of podocyte integrity and prevention of podocyte apoptosis.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Enfermedades Renales , Podocitos , Receptor de Angiotensina Tipo 2/metabolismo , Angiotensina II/metabolismo , Animales , Catepsina L/metabolismo , Catepsina L/farmacología , Glomeruloesclerosis Focal y Segmentaria/inducido químicamente , Glomeruloesclerosis Focal y Segmentaria/genética , Glomeruloesclerosis Focal y Segmentaria/metabolismo , Imidazoles , Enfermedades Renales/metabolismo , Masculino , Ratones , Ratones Noqueados , Podocitos/metabolismo , Sulfonamidas , Tiofenos
11.
Kidney Int Rep ; 7(3): 568-579, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35257069

RESUMEN

Introduction: There are limited reports on kidney biopsy findings in patients with mantle cell lymphoma (MCL). Methods: We initiated a multi-institutional, retrospective review of kidney biopsy findings in patients with active and treated MCL. Results: A total of 30 patients with MCL and kidney biopsies were identified, with a median age of 67 (range 48-87) years, 73% of whom were men. A total of 20 patients had active MCL at the time of biopsy, of whom 14 (70%) presented with acute kidney injury (AKI), proteinuria and/or hematuria, and biopsy findings potentially attributable to lymphoma. Of the 14, 11 had immune complex (IC) or complement-mediated (C3) disease including proliferative glomerulonephritis (GN) with monotypic Ig deposits (PGNMID [2]), C3GN, (2), secondary membranous nephropathy (MN [3]), tubular basement membrane (TBM) deposits (2), and modest lupus-like GN (2). Lymphomatous infiltration was present in 8 of the 20 patients, 5 with coincident IC or C3 lesions. A total of 6 patients with available follow-up were treated for MCL, all with clinical remission of GN (2 PGNMID, 2 C3GN, and 2 MN). Conclusion: MCL is associated with diverse monoclonal and polyclonal glomerular and extra-glomerular IC and C3 disease. For patients with active MCL and kidney dysfunction requiring biopsy, 70% had findings due or potentially due to lymphoma, including 55% with IC or C3 disease and 40% had lymphomatous kidney infiltration. IC and C3GN in the setting of active MCL was responsive to lymphoma-directed therapy.

12.
Sci Transl Med ; 14(634): eabj4772, 2022 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-35235339

RESUMEN

Kidneys have the capacity for intrinsic repair, preserving kidney architecture with return to a basal state after tubular injury. When injury is overwhelming or repetitive, however, that capacity is exceeded and incomplete repair results in fibrotic tissue replacing normal kidney parenchyma. Loss of nephrons correlates with reduced kidney function, which defines chronic kidney disease (CKD) and confers substantial morbidity and mortality to the worldwide population. Despite the identification of pathways involved in intrinsic repair, limited treatments for CKD exist, partly because of the limited throughput and predictivity of animal studies. Here, we showed that kidney organoids can model the transition from intrinsic to incomplete repair. Single-nuclear RNA sequencing of kidney organoids after cisplatin exposure identified 159 differentially expressed genes and 29 signal pathways in tubular cells undergoing intrinsic repair. Homology-directed repair (HDR) genes including Fanconi anemia complementation group D2 (FANCD2) and RAD51 recombinase (RAD51) were transiently up-regulated during intrinsic repair but were down-regulated in incomplete repair. Single cellular transcriptomics in mouse models of obstructive and hemodynamic kidney injury and human kidney samples of immune-mediated injury validated HDR gene up-regulation during tubular repair. Kidney biopsy samples with tubular injury and varying degrees of fibrosis confirmed loss of FANCD2 during incomplete repair. Last, we performed targeted drug screening that identified the DNA ligase IV inhibitor, SCR7, as a therapeutic candidate that rescued FANCD2/RAD51-mediated repair to prevent the progression of CKD in the cisplatin-induced organoid injury model. Our findings demonstrate the translational utility of kidney organoids to identify pathologic pathways and potential therapies.


Asunto(s)
Organoides , Insuficiencia Renal Crónica , Animales , Cisplatino/farmacología , Reparación del ADN , Recombinación Homóloga , Riñón , Ratones
13.
Diabetologia ; 64(11): 2589-2601, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34370045

RESUMEN

AIMS/HYPOTHESIS: We previously reported that renal tubule-specific deletion of heterogeneous nuclear ribonucleoprotein F (Hnrnpf) results in upregulation of renal angiotensinogen (Agt) and downregulation of sodium-glucose co-transporter 2 (Sglt2) in HnrnpfRT knockout (KO) mice. Non-diabetic HnrnpfRT KO mice develop hypertension, renal interstitial fibrosis and glycosuria with no renoprotective effect from downregulated Sglt2 expression. Here, we investigated the effect of renal tubular Hnrnpf deletion on hyperfiltration and kidney injury in Akita mice, a model of type 1 diabetes. METHODS: Akita HnrnpfRT KO mice were generated through crossbreeding tubule-specific (Pax8)-Cre mice with Akita floxed-Hnrnpf mice on a C57BL/6 background. Male non-diabetic control (Ctrl), Akita, and Akita HnrnpfRT KO mice were studied up to the age of 24 weeks (n = 8/group). RESULTS: Akita mice exhibited elevated systolic blood pressure as compared with Ctrl mice, which was significantly higher in Akita HnrnpfRT KO mice than Akita mice. Compared with Akita mice, Akita HnrnpfRT KO mice had lower blood glucose levels with increased urinary glucose excretion. Akita mice developed kidney hypertrophy, glomerular hyperfiltration (increased glomerular filtration rate), glomerulomegaly, mesangial expansion, podocyte foot process effacement, thickened glomerular basement membranes, renal interstitial fibrosis and increased albuminuria. These abnormalities were attenuated in Akita HnrnpfRT KO mice. Treatment of Akita HnrnpfRT KO mice with a selective A1 adenosine receptor inhibitor resulted in an increase in glomerular filtration rate. Renal Agt expression was elevated in Akita mice and further increased in Akita HnrnpfRT KO mice. In contrast, Sglt2 expression was increased in Akita and decreased in Akita HnrnpfRT KO mice. CONCLUSIONS/INTERPRETATION: The renoprotective effect of Sglt2 downregulation overcomes the renal injurious effect of Agt when these opposing factors coexist under diabetic conditions, at least partly via the activation of tubuloglomerular feedback.


Asunto(s)
Lesión Renal Aguda/prevención & control , Diabetes Mellitus Tipo 1/prevención & control , Modelos Animales de Enfermedad , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/fisiología , Túbulos Renales/metabolismo , Transportador 2 de Sodio-Glucosa/metabolismo , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Angiotensinógeno , Animales , Glucemia/metabolismo , Presión Sanguínea , Western Blotting , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Regulación hacia Abajo , Tasa de Filtración Glomerular/fisiología , Túbulos Renales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Antagonistas de Receptores Purinérgicos P1/farmacología , Reacción en Cadena en Tiempo Real de la Polimerasa , Teofilina/análogos & derivados , Teofilina/farmacología
14.
Comput Med Imaging Graph ; 89: 101865, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33548823

RESUMEN

Reliable counting of glomeruli and evaluation of glomerulosclerosis in renal specimens are essential steps to assess morphological changes in kidney and identify individuals requiring treatment. Because microscopic identification of sclerosed glomeruli performed under the microscope is labor intensive, we developed a deep learning (DL) approach to identify and classify glomeruli as normal or sclerosed in digital whole slide images (WSIs). The segmentation and classification of glomeruli was performed by the U-Net model. Subsequently, glomerular classifications were refined based on glomerular histomorphometry. The U-Net model was trained using patches from Periodic Acid-Schiff (PAS) stained WSIs (n=31) from the AIDPATH - a multi-center dataset, and then tested on an independent set of WSIs (n=20) including PAS (n=6), and hematoxylin and eosin (H&E) stained WSIs (n=14) from four other institutions. The training and test WSIs were obtained from formalin fixed and paraffin embedded blocks with of human kidney specimens each presenting various proportions of normal and sclerosed glomeruli. In the PAS stained WSIs, normal and sclerosed glomeruli were respectively classified with the F1-score of 97.5% and 68.8%. In the H&E stained WSIs, the F1-scores of 90.8% and 78.1% were achieved. Regardless the tissue staining, the glomeruli in the test WSIs were classified with the F1-score of 94.5% (n=923, normal) and 76.8% for (n=261, sclerosed). These results demonstrate for the first time that a framework based on the U-Net model trained with glomerular patches from PAS stained WSIs can reliably segment and classify normal and sclerosed glomeruli in PAS and also H&E stained WSIs. Our approach yielded higher accuracy of glomerular classifications than some of the recently published methods. Additionally, our test set of images with ground truth is publicly available.


Asunto(s)
Aprendizaje Profundo , Eosina Amarillenta-(YS) , Hematoxilina , Humanos , Riñón/diagnóstico por imagen , Coloración y Etiquetado
15.
Glomerular Dis ; 1(3): 145-159, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36751496

RESUMEN

Background: For the better part of the past 6 decades, transmission electron microscopy (EM), together with routine light microscopy and immunofluorescence and/or immunohistochemistry (IHC), has been an essential component of the diagnostic workup of medical renal biopsies, particularly native renal biopsies, with increasing frequency in renal allograft biopsies as well. Studies performed prior to the year 2000 have indeed shown that a substantial fraction of renal biopsies cannot be accurately diagnosed without EM. Still, EM remains costly and labor-intensive, and with increasing pressure to reduce healthcare costs, some centers are de-emphasizing diagnostic EM. This trend has been coupled with advances in IHC and other methods in renal biopsy diagnosis over the past 2-3 decades. Summary: Nonetheless, it has been our experience that the diagnostic value of EM in the comprehensive evaluation of renal biopsies remains similar to what it was 20-30 years ago. In this review, we provide several key examples from our practice where EM was essential in making the correct renal biopsy diagnosis, ranging from relatively common glomerular lesions to rare diseases. Key Messages: EM remains an important component of the diagnostic evaluation of medical renal biopsies. Failure to perform EM in certain cases will result in an incorrect diagnosis, with possible clinical consequences. We strongly recommend that tissue for EM be taken and stored in an appropriate fixative and ultrastructural studies be performed for all native renal biopsies, as well as appropriate renal allograft biopsies as recommended by the Banff consortium.

16.
Clin Kidney J ; 14(9): 2090-2100, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35261763

RESUMEN

Background: Nephropathy in patients with thymic diseases such as thymoma and myasthenia gravis (MG) is rare and has been described mostly as isolated case reports. Here we evaluate a series of kidney biopsies from patients with thymoma and/or MG from a single institution in order to better define the spectrum and relative frequencies of thymic disease-associated nephropathies. Methods: We conducted a retrospective case series study of 32 462 native kidney biopsies from January 2005 through December 2019 at Cedars-Sinai Medical Center, Los Angeles, CA, USA. Results: Twenty-four biopsy specimens (0.07%) from patients with a history of thymoma and/or MG were identified. Two patients had repeat biopsies. The most common pathologic diagnosis that could be immunologically attributed to thymic disease was minimal change disease (MCD; 45%), followed by tubulointerstitial nephritis (TIN; 14%), immune complex (IC)-mediated glomerulonephritis (9%), membranous nephropathy (5%) and immunoglobulin A (IgA) nephropathy (5%). Interestingly, 50% of the MCD and 67% of TIN cases concomitantly showed mild IgG-dominant IC deposition in mesangial areas and/or in tubular basement membranes. In the two patients with repeat biopsies, mild mesangial IC deposition developed in the MCD patient but disappeared in the TIN patient with the second biopsy. Pathologic diagnoses unlikely related to the underlying thymic disease were diabetic glomerulosclerosis (9%), acute tubular necrosis (9%) and monoclonal Ig deposition disease (5%). Conclusions: Thymic disease is associated with a wide spectrum of kidney diseases affecting the glomerular and tubulointerstitial compartments, often with low-grade IC deposition. These findings suggest a role of immunologic dysregulation in the pathogenesis of thymic disease-associated nephropathy.

17.
Am J Kidney Dis ; 77(1): 82-93.e1, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33045255

RESUMEN

RATIONALE & OBJECTIVE: Kidney biopsy data inform us about pathologic processes associated with infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We conducted a multicenter evaluation of kidney biopsy findings in living patients to identify various kidney disease pathology findings in patients with coronavirus disease 2019 (COVID-19) and their association with SARS-CoV-2 infection. STUDY DESIGN: Case series. SETTING & PARTICIPANTS: We identified 14 native and 3 transplant kidney biopsies performed for cause in patients with documented recent or concurrent SARS-CoV-2 infection treated at 7 large hospital systems in the United States. OBSERVATIONS: Men and women were equally represented in this case series, with a higher proportion of Black (n=8) and Hispanic (n=5) patients. All 17 patients had SARS-CoV-2 infection confirmed by reverse transcriptase-polymerase chain reaction, but only 3 presented with severe COVID-19 symptoms. Acute kidney injury (n=15) and proteinuria (n=11) were the most common indications for biopsy and these symptoms developed concurrently or within 1 week of COVID-19 symptoms in all patients. Acute tubular injury (n=14), collapsing glomerulopathy (n=7), and endothelial injury/thrombotic microangiopathy (n=6) were the most common histologic findings. 2 of the 3 transplant recipients developed active antibody-mediated rejection weeks after COVID-19. 8 patients required dialysis, but others improved with conservative management. LIMITATIONS: Small study size and short clinical follow-up. CONCLUSIONS: Cases of even symptomatically mild COVID-19 were accompanied by acute kidney injury and/or heavy proteinuria that prompted a diagnostic kidney biopsy. Although acute tubular injury was seen among most of them, uncommon pathology such as collapsing glomerulopathy and acute endothelial injury were detected, and most of these patients progressed to irreversible kidney injury and dialysis.


Asunto(s)
Lesión Renal Aguda/etiología , Lesión Renal Aguda/patología , COVID-19/complicaciones , COVID-19/patología , Proteinuria/etiología , Proteinuria/patología , Adulto , Anciano , Diagnóstico Diferencial , Femenino , Estudios de Seguimiento , Humanos , Riñón/patología , Masculino , Persona de Mediana Edad
18.
Front Immunol ; 11: 554725, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072095

RESUMEN

Systemic Lupus Erythematosus (SLE) is a chronic inflammatory autoimmune disease in which type I interferons (IFN) play a key role. The IFN response can be triggered when oxidized DNA engages the cytosolic DNA sensing platform cGAS-STING, but the repair mechanisms that modulate this process and govern disease progression are unclear. To gain insight into this biology, we interrogated the role of oxyguanine glycosylase 1 (OGG1), which repairs oxidized guanine 8-Oxo-2'-deoxyguanosine (8-OH-dG), in the pristane-induced mouse model of SLE. Ogg1-/- mice showed increased influx of Ly6Chi monocytes into the peritoneal cavity and enhanced IFN-driven gene expression in response to short-term exposure to pristane. Loss of Ogg1 was associated with increased auto-antibodies (anti-dsDNA and anti-RNP), higher total IgG, and expression of interferon stimulated genes (ISG) to longer exposure to pristane, accompanied by aggravated skin pathology such as hair loss, thicker epidermis, and increased deposition of IgG in skin lesions. Supporting a role for type I IFNs in this model, skin lesions of Ogg1-/- mice had significantly higher expression of type I IFN genes (Isg15, Irf9, and Ifnb). In keeping with loss of Ogg1 resulting in dysregulated IFN responses, enhanced basal and cGAMP-dependent Ifnb expression was observed in BMDMs from Ogg1-/- mice. Use of the STING inhibitor, H151, reduced both basal and cGAMP-driven increases, indicating that OGG1 regulates Ifnb expression through the cGAS-STING pathway. Finally, in support for a role for OGG1 in the pathology of cutaneous disease, reduced OGG1 expression in monocytes associated with skin involvement in SLE patients and the expression of OGG1 was significantly lower in lesional skin compared with non-lesional skin in patients with Discoid Lupus. Taken together, these data support an important role for OGG1 in protecting against IFN production and SLE skin disease.


Asunto(s)
Daño del ADN/inmunología , Lupus Eritematoso Cutáneo/inmunología , Lupus Eritematoso Sistémico/inmunología , Piel/inmunología , Terpenos/efectos adversos , Animales , ADN Glicosilasas/deficiencia , ADN Glicosilasas/inmunología , Modelos Animales de Enfermedad , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Lupus Eritematoso Cutáneo/inducido químicamente , Lupus Eritematoso Cutáneo/genética , Lupus Eritematoso Cutáneo/patología , Lupus Eritematoso Sistémico/inducido químicamente , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/patología , Ratones , Ratones Noqueados , Monocitos/inmunología , Monocitos/patología , Oxidación-Reducción/efectos de los fármacos , Piel/patología , Terpenos/farmacología
19.
Front Immunol ; 11: 584254, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33101313

RESUMEN

Red blood cell (RBC) transfusion exposes recipients to hundreds of unmatched minor RBC antigens. This exposure can lead to production of alloantibodies that promote clinically significant hemolytic events. Multiple studies have reported an increased frequency of RBC alloimmunization in patients with autoimmunity. However, cellular and molecular mechanisms that underlie autoimmunity-induced alloimmunization have not been reported. Patients with systemic lupus erythematosus (SLE) have a high frequency of alloimmunization and express a type 1 interferon (IFNα/ß) gene signature. Thus, we utilized the pristane-induced lupus mouse model to test the hypothesis that inflammation in lupus promotes RBC alloimmunization, and to examine the potential role of IFNα/ß. Intraperitoneal injection of pristane, a hydrocarbon oil, led to autoantibody production, glomerulonephritis, and pulmonary hemorrhage in wild type (WT) mice. Pristane treatment significantly induced serum IFNα and expression of multiple interferon-stimulated genes (ISGs) in peripheral blood and peritoneal fluid cells, including inflammatory macrophages. Following transfusion with allogeneic RBCs expressing the KEL glycoprotein, pristane-treated WT mice produced significantly elevated levels of anti-KEL IgM and anti-KEL IgG, compared to untreated mice. Pristane induced comparable levels of inflammatory cells and cytokines in mice lacking the IFNα/ß receptor (IFNAR1-/-) or the IFNα/ß-inducing transcriptions factors (IRF3/7-/-), compared to WT mice. However, pristane-treated IFNAR1-/- and IRF3/7-/- mice failed to produce ISGs and produced significantly lower levels of transfusion-induced anti-KEL IgG, compared to WT mice. Thus, pristane induction of a lupus-like phenotype promoted alloimmunization to the KEL RBC antigen in an IFNα/ß-dependent manner. To our knowledge, this is the first examination of molecular mechanisms contributing to RBC alloimmunization in a model of autoimmunity. These results warrant further investigation of the role of IFNα/ß in alloimmunization to other RBC antigens and the contribution of the IFNα/ß gene signature to the elevated frequency of alloimmunization in patients with SLE.


Asunto(s)
Autoinmunidad/genética , Autoinmunidad/inmunología , Eritrocitos/inmunología , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/inmunología , Animales , Antígenos/inmunología , Modelos Animales de Enfermedad , Transfusión de Eritrocitos/métodos , Inflamación/genética , Inflamación/inmunología , Isoanticuerpos/genética , Isoanticuerpos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
20.
Int J Mol Sci ; 21(4)2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32093254

RESUMEN

In inflammatory bowel disease (IBD), the intestinal epithelium is characterized by increased permeability both in active disease and remission states. The genetic underpinnings of this increased intestinal permeability are largely unstudied, in part due to a lack of appropriate modelling systems. Our aim is to develop an in vitro model of intestinal permeability using induced pluripotent stem cell (iPSC)-derived human intestinal organoids (HIOs) and human colonic organoids (HCOs) to study barrier dysfunction. iPSCs were generated from healthy controls, adult onset IBD, and very early onset IBD (VEO-IBD) patients and differentiated into HIOs and HCOs. EpCAM+ selected cells were seeded onto Transwell inserts and barrier integrity studies were carried out in the presence or absence of pro-inflammatory cytokines TNFα and IFNγ. Quantitative real-time PCR (qRT-PCR), transmission electron microscopy (TEM), and immunofluorescence were used to determine altered tight and adherens junction protein expression or localization. Differentiation to HCO indicated an increased gene expression of CDX2, CD147, and CA2, and increased basal transepithelial electrical resistance compared to HIO. Permeability studies were carried out in HIO- and HCO-derived epithelium, and permeability of FD4 was significantly increased when exposed to TNFα and IFNγ. TEM and immunofluorescence imaging indicated a mislocalization of E-cadherin and ZO-1 in TNFα and IFNγ challenged organoids with a corresponding decrease in mRNA expression. Comparisons between HIO- and HCO-epithelium show a difference in gene expression, electrophysiology, and morphology: both are responsive to TNFα and IFNγ stimulation resulting in enhanced permeability, and changes in tight and adherens junction architecture. This data indicate that iPSC-derived HIOs and HCOs constitute an appropriate physiologically responsive model to study barrier dysfunction and the role of the epithelium in IBD and VEO-IBD.


Asunto(s)
Colon/metabolismo , Regulación de la Expresión Génica , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Modelos Biológicos , Línea Celular , Colon/patología , Humanos , Células Madre Pluripotentes Inducidas/patología , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/patología , Organoides/metabolismo , Organoides/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA