Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Theranostics ; 14(9): 3760-3776, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948060

RESUMEN

Rationale: Currently, there are occasional reports of health problems caused by sleep deprivation (SD). However, to date, there remains a lack of in-depth research regarding the effects of SD on the growth and development of oocytes in females. The present work aimed to investigate whether SD influences ovarian folliculogenesis in adolescent female mice. Methods: Using a dedicated device, SD conditions were established in 3-week old female mice (a critical stage of follicular development) for 6 weeks and gut microbiota and systemic metabolomics were analyzed. Analyses were related to parameters of folliculogenesis and reproductive performance of SD females. Results: We found that the gut microbiota and systemic metabolomics were severely altered in SD females and that these were associated with parameters of premature ovarian insufficiency (POI). These included increased granulosa cell apoptosis, reduced numbers of primordial follicles (PmFs), correlation with decreased AMH, E2, and increased LH in blood serum, and a parallel increased number of growing follicles and changes in protein expression compatible with PmF activation. SD also reduced oocyte maturation and reproductive performance. Notably, fecal microbial transplantation from SD females into normal females induced POI parameters in the latter while niacinamide (NAM) supplementation alleviated such symptoms in SD females. Conclusion: Gut microbiota and alterations in systemic metabolomics caused by SD induced POI features in juvenile females that could be counteracted with NAM supplementation.


Asunto(s)
Disbiosis , Microbioma Gastrointestinal , Metabolómica , Insuficiencia Ovárica Primaria , Privación de Sueño , Animales , Femenino , Insuficiencia Ovárica Primaria/metabolismo , Ratones , Disbiosis/microbiología , Disbiosis/metabolismo , Metabolómica/métodos , Privación de Sueño/complicaciones , Privación de Sueño/metabolismo , Folículo Ovárico/metabolismo , Oocitos/metabolismo , Trasplante de Microbiota Fecal , Modelos Animales de Enfermedad , Apoptosis
2.
Imeta ; 3(2): e166, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882497

RESUMEN

Asthenozoospermia (AZS) is a prevalent contributor to male infertility, characterized by a substantial decline in sperm motility. In recent years, large-scale studies have explored the interplay between the male reproductive system's microecology and its implications for reproductive health. Nevertheless, the direct association between seminal microecology and male infertility pathogenesis remains inconclusive. This study used 16S rDNA sequencing and multi-omics analysis to conduct a comprehensive investigation of the seminal microbial community and metabolites in AZS patients. Patients were categorized into four distinct groups: Normal, mild AZS (AZS-I), moderate AZS (AZS-II), and severe AZS (AZS-III). Microbiome differential abundance analysis revealed significant differences in microbial composition and metabolite profiles within the seminal plasma of these groups. Subsequently, patients were classified into a control group (Normal and AZS-I) and an AZS group (AZS-II and AZS-III). Correlation and cross-reference analyses identified distinct microbial genera and metabolites. Notably, the AZS group exhibited a reduced abundance of bacterial genera such as Pseudomonas, Serratia, and Methylobacterium-Methylorubrum in seminal plasma, positively correlating with core differential metabolite (hexadecanamide). Conversely, the AZS group displayed an increased abundance of bacterial genera such as Uruburuella, Vibrio, and Pseudoalteromonas, with a negative correlation with core differential metabolite (hexadecanamide). In vitro and in vivo experiments validated that hexadecanamide significantly enhanced sperm motility. Using predictive metabolite-targeting gene analysis and single-cell transcriptome sequencing, we profiled the gene expression of candidate target genes PAOX and CA2. Protein immunoblotting techniques validated the upregulation protein levels of PAOX and CA2 in sperm samples after hexadecanamide treatment, enhancing sperm motility. In conclusion, this study uncovered a significant correlation between six microbial genera in seminal plasma and the content of the metabolite hexadecanamide, which is related to AZS. Hexadecanamide notably enhances sperm motility, suggesting its potential integration into clinical strategies for managing AZS, providing a foundational framework for diagnostic and therapeutic advancements.

3.
Gene ; 915: 148407, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38531491

RESUMEN

The development of pig skeletal muscle is a complex dynamic regulation process, which mainly includes the formation of primary and secondary muscle fibers, the remodeling of muscle fibers, and the maturation of skeletal muscle; However, the regulatory mechanism of the entire developmental process remains unclear. This study analyzed the whole-transcriptome data of skeletal muscles at 27 developmental nodes (E33-D180) in Landrace pigs, and their key regulatory factors in the development process were identified using the bioinformatics method. Firstly, we constructed a transcriptome expression map of skeletal muscle development from embryo to adulthood in Landrace pig. Subsequently, due to drastic change in gene expression, the perinatal periods including E105, D0 and D9, were focused, and the genes related to the process of muscle fiber remodeling and volume expansion were revealed. Then, though conjoint analysis with miRNA and lncRNA transcripts, a ceRNA network were identified, which consist of 11 key regulatory genes (such as CHAC1, RTN4IP1 and SESN1), 7 miRNAs and 43 lncRNAs, and they potentially play an important role in the process of muscle fiber differentiation, muscle fiber remodeling and volume expansion, intramuscular fat deposition, and other skeletal muscle developmental events. In summary, we reveal candidate genes and underlying molecular regulatory networks associated with perinatal skeletal muscle fiber type remodeling and expansion. These data provide new insights into the molecular regulation of mammalian skeletal muscle development and diversity.


Asunto(s)
Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , MicroARNs , Desarrollo de Músculos , Músculo Esquelético , Transcriptoma , Animales , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Porcinos/genética , Perfilación de la Expresión Génica/métodos , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
5.
J Hazard Mater ; 465: 132997, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38008054

RESUMEN

Presently, the exposure of plasticizers to humans and animals occurs daily, which pose a potential threat to reproductive health. In the present study, a pregnant mouse model exposed to di(2-ethylhexyl) phthalate (DEHP, one of the most common plasticizers) and melatonin was established, and the single-cell transcriptome technology was applied to investigate the effects of melatonin in ovarian cells against DEHP. Results showed that DEHP markedly altered the gene expression pattern of ovarian cells, and severely weakened the histone methylation modification of oocytes. The administration of melatonin recovered the expression of LHX8 and SOHLH1 proteins that essential for primordial follicle formation, and increased the expression of CEBPB, as well as key genes of histone methylation modification (such as Smyd3 and Kdm5a). In addition, the ovarian damage caused by DEHP was also relieved after the overexpression of CEBPB, which suggested melatonin could improve primordial follicle formation progress via enhancing CEBPB expression in mice. Besides, the apoptosis of ovarian cells induced by DEHP also was diminished by melatonin. The study provides evidence of melatonin preventing the damage mediated by plasticizers on the reproductive system in females and CEBPB may serve as a downstream target factor of melatonin in the process.


Asunto(s)
Dietilhexil Ftalato , Melatonina , Ácidos Ftálicos , Embarazo , Femenino , Humanos , Animales , Ratones , Melatonina/farmacología , Plastificantes/toxicidad , Dietilhexil Ftalato/toxicidad , Histonas , Oocitos , Proteína beta Potenciadora de Unión a CCAAT/farmacología
6.
J Hazard Mater ; 459: 132226, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37549580

RESUMEN

Zearalenone (ZEN) is a widespread and transgenerational toxicant that can cause serious reproductive health risks, which poses a potential threat to global agricultural production and human health; its estrogenic activity can lead to reproductive toxicity through the induction of granulosa cell apoptosis. Herein, comparative transcriptome analysis, single-cell transcriptome analysis, and weighted gene co-expression network analysis (WGCNA) combined with gene knockout in vivo and RNA interference in vitro were used to comprehensively describe the damage caused by ZEN exposure on ovarian granulosa cells. Comparative transcriptome analysis and WGCNA suggested that the tumor necrosis factor (TNF)-α-mediated mitogen-activated protein kinase 7 (MAP2K7)/ AKT serine/threonine kinase 2 (AKT2) axis was disordered after ZEN exposure in porcine granulosa cells (pGCs) and mouse granulosa cells (mGCs). In vivo gene knockout and in vitro RNA interference verified that TNF-α-mediated MAP2K7/AKT2 was the guiding signal in ZEN-induced apoptosis in pGCs and mGCs. Moreover, single-cell transcriptome analysis showed that ZEN exposure could induce changes in the TNF signaling pathway in offspring. Overall, we concluded that the TNF-α-mediated MAP2K7/AKT2 axis was the main signaling pathway of ZEN-induced apoptosis in pGCs and mGCs. This work provides new insights into the mechanism of ZEN toxicity and provides new potential therapeutic targets for the loss of livestock and human reproductive health caused by ZEN.


Asunto(s)
Zearalenona , Animales , Femenino , Ratones , Apoptosis , MAP Quinasa Quinasa 7 , Proteína Quinasa 7 Activada por Mitógenos , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal , Porcinos , Transcriptoma , Factor de Necrosis Tumoral alfa/genética , Zearalenona/toxicidad
7.
Cell Death Dis ; 14(2): 134, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36797258

RESUMEN

In order to reveal the complex mechanism governing the mitotic/meiotic switch in female germ cells at epigenomic and genomic levels, we examined the chromatin accessibility (scATAC-seq) and the transcriptional dynamics (scRNA-seq) in germ cells of mouse embryonic ovary between E11.5 to 13.5 at single-cell resolution. Adopting a strict transcription factors (TFs) screening framework that makes it easier to understand the single-cell chromatin signature and a TF interaction algorithm that integrates the transcript levels, chromatin accessibility, and motif scores, we identified 14 TFs potentially regulating the mitotic/meiotic switch, including TCFL5, E2F1, E2F2, E2F6, E2F8, BATF3, SP1, FOS, FOXN3, VEZF1, GBX2, CEBPG, JUND, and TFDP1. Focusing on TCFL5, we constructed Tcfl5+/- mice which showed significantly reduced fertility and found that decreasing TCFL5 expression in cultured E12.5 ovaries by RNAi impaired meiotic progression from leptotene to zygotene. Bioinformatics analysis of published results of the embryonic germ cell transcriptome and the finding that in these cells central meiotic genes (Stra8, Tcfl5, Sycp3, and E2f2) possess open chromatin status already at the mitotic stage together with other features of TCFL5 (potential capability to interact with core TFs and activate meiotic genes, its progressive activation after preleptotene, binding sites in the promoter region of E2f2 and Sycp3), indicated extensive amplification of transcriptional programs associated to mitotic/meiotic switch with an important contribution of TCFL5. We conclude that the identified TFs, are involved in various stages of the mitotic/meiotic switch in female germ cells, TCFL5 primarily in meiotic progression. Further investigation on these factors might give a significant contribution to unravel the molecular mechanisms of this fundamental process of oogenesis and provide clues about pathologies in women such as primary ovarian insufficiency (POI) due at least in part to meiotic defects.


Asunto(s)
Factores de Transcripción , Transcriptoma , Femenino , Animales , Ratones , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma/genética , Epigenómica , Meiosis/genética , Cromatina/genética
8.
Genes (Basel) ; 13(12)2022 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-36553607

RESUMEN

Donkeys, with high economic value for meat, skin and milk production, are important livestock. However, the current insights into reproduction of donkeys are far from enough. To obtain a deeper understanding, the differential expression analysis and weighted gene co-expression network analysis (WGCNA) of transcriptomic data of testicular and epididymis tissues in donkeys were performed. In the result, there were 4313 differentially expressed genes (DEGs) in the two tissues, including 2047 enriched in testicular tissue and 2266 in epididymis tissue. WGCNA identified 1081 hub genes associated with testis development and 6110 genes with epididymal development. Next, the tissue-specific genes were identified with the above two methods, and the gene ontology (GO) analysis revealed that the epididymal-specific genes were associated with gonad development. On the other hand, the testis-specific genes were involved in the formation of sperm flagella, meiosis period, ciliary assembly, ciliary movement, etc. In addition, we found that eca-Mir-711 and eca-Mir-143 likely participated in regulating the development of epididymal tissue. Meanwhile, eca-Mir-429, eca-Mir-761, eca-Mir-200a, eca-Mir-191 and eca-Mir-200b potentially played an important role in regulating the development of testicular tissue. In short, these results will contribute to functional studies of the male reproductive trait in donkeys.


Asunto(s)
Epidídimo , Testículo , Animales , Masculino , Testículo/metabolismo , Epidídimo/metabolismo , Equidae/genética , Semen , Perfilación de la Expresión Génica
9.
J Agric Food Chem ; 70(49): 15570-15582, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36514903

RESUMEN

Zearalenone (ZEN) is a mycotoxin that is widely present in feed and agricultural products. Studies have demonstrated that ZEN, as a type of estrogen analogue, can significantly affect the female reproductive system. Breast milk is the best nutrient for infant growth and development, but it is still unknown whether ZEN influences the fertility of offspring through suckling. In this study, we collected fecal and ovarian tissue from neonatal female offspring, whose mothers were exposed to ZEN for 21 days, and explored the effects of maternal ZEN exposure on intestinal microecology and follicular development in the mouse using 16S rRNA amplicon sequencing technology. Our findings suggested that maternal ZEN exposure significantly diminished ovarian reserve, increased apoptosis of ovarian granulosa cell (GC), and impacted the developmental competence of oocytes in lactating offspring. In addition, the results of 16S rRNA sequencing showed that the abundance of gut microbiota in offspring was significantly changed, including Bacteroidetes, Proteobacteria, and Firmicutes. This leads to alterations of glutathione metabolism and the expression of antioxidant enzymes in ovaries. In summary, our findings supported a potential relationship between gut microbiota and abnormal ovarian development caused by ZEN, which offers novel insights for therapeutic strategies for reproductive disorders induced by ZEN exposure.


Asunto(s)
Microbioma Gastrointestinal , Zearalenona , Humanos , Femenino , Ratones , Animales , Zearalenona/toxicidad , ARN Ribosómico 16S/genética , Lactancia , Exposición Materna/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA