Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
2.
Food Chem ; 445: 138696, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38354643

RESUMEN

This study investigated the odor profiles of four pea milk varieties based on sensory evaluation, electronic nose (E-nose), and gas chromatography-mass spectrometry (GC-MS) with soybean milk as a reference. Compared to soybean milk, pea milk exhibited lower intensity of beany, oil-oxidation, and mushroom flavors as well as higher intensity of grassy/green and earthy flavors. ZW.6 pea milk was selected for further identification of key odor-active compounds using molecular sensory science approaches. Using headspace solid phase microextraction (HS-SPME), solvent-assisted flavor evaporation (SAFE), and dynamic headspace sampling (DHS) combined with comprehensive gas chromatography-olfactometry-mass spectrometry (GC × GC-O-MS), 102 odor-active compounds were detected in ZW.6 pea milk. Among these, 19 compounds exhibiting high flavor dilution (FD) factors were accurately quantitated. Ten key odor-active compounds were ultimately identified through aroma recombination and omission experiment. Aldehydes and alcohols significantly contribute to the odor profile of pea milk.


Asunto(s)
Odorantes , Compuestos Orgánicos Volátiles , Animales , Odorantes/análisis , Glycine max , Pisum sativum , Leche/química , Compuestos Orgánicos Volátiles/análisis , Aromatizantes/análisis , Olfatometría/métodos
3.
Ultrason Sonochem ; 91: 106238, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36436485

RESUMEN

A molecular sensory science approach was used to explore the effects of ultrasonic treatment on aroma compounds of watermelon juice. Watermelon juice was submitted to ultrasonic power at 325 W for 20 min. Ultrasonic treatment reduced odor related to cucumber and green descriptors, whilst significantly improved odors related to sweet, floral, and fruity descriptors, thus contributing to the overall flavor of watermelon juice. Compared with untreated watermelon juice, the amount and concentration of volatile compounds in ultrasonicated watermelon juice increased by 82.50% and 111.84%, respectively. Notably, 22 alkene compounds were newly formed in ultrasonicated watermelon juice, which contributed to sweet and fruity aroma of watermelon juice. The findings of the present study suggest that ultrasonic treatment may be a potential method to improve the overall flavor of watermelon juice.


Asunto(s)
Citrullus , Ultrasonido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA