Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 357
Filtrar
1.
Front Immunol ; 15: 1413704, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39308856

RESUMEN

Background: COVID-19 vaccines are crucial for reducing the threat and burden of the pandemic on global public health, yet the epigenetic, especially RNA editing in response to the vaccines remains unelucidated. Results: Our current study performed an epitranscriptomic analysis of RNA-Seq data of 260 blood samples from 102 healthy and SARS-CoV-2 naïve individuals receiving different doses of the COVID-19 vaccine and revealed dynamic, transcriptome-wide adenosine to inosine (A-to-I) RNA editing changes in response to COVID-19 vaccines (RNA editing in response to COVID-19 vaccines). 5592 differential RNA editing (DRE) sites in 1820 genes were identified, with most of them showing up-regulated RNA editing and correlated with increased expression of edited genes. These deferentially edited genes were primarily involved in immune- and virus-related gene functions and pathways. Differential ADAR expression probably contributed to RNA editing in response to COVID-19 vaccines. One of the most significant DRE in RNA editing in response to COVID-19 vaccines was in apolipoprotein L6 (APOL6) 3' UTR, which positively correlated with its up-regulated expression. In addition, recoded key antiviral and immune-related proteins such as IFI30 and GBP1 recoded by missense editing was observed as an essential component of RNA editing in response to COVID-19 vaccines. Furthermore, both RNA editing in response to COVID-19 vaccines and its functions dynamically depended on the number of vaccine doses. Conclusion: Our results thus underscored the potential impact of blood RNA editing in response to COVID-19 vaccines on the host's molecular immune system.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Epigénesis Genética , Edición de ARN , SARS-CoV-2 , Humanos , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , COVID-19/inmunología , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Adenosina/inmunología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/inmunología , Transcriptoma , Adenosina Desaminasa/genética , Masculino , Adulto , Inosina , Femenino
2.
Artículo en Inglés | MEDLINE | ID: mdl-39271146

RESUMEN

OBJECTIVES: To explore clinical factors and build a predictive model for the disease-free and overall survival in non-small cell lung cancer patients receiving neoadjuvant chemotherapy combined with immune checkpoint inhibitors. METHODS: Inclusion criteria for patients in this multicentre study were: (1) patients were diagnosed with stage I-III non-small cell lung cancer diagnosed by bronchoscopy biopsy or puncture; (2) computed tomography/positron emission tomography-computed tomography was applied before treatment and surgery; (3) neoadjuvant chemotherapy combined with immune checkpoint inhibitors were applied for 2-6 cycles preoperatively; (4) peripheral blood indicators and tumour markers were assessed before treatment and surgery; (5) patients underwent radical lung cancer surgery after neoadjuvant therapy. Cases were divided into high- and low-risk groups according to 78 clinical indicators based on 10-fold LASSO selection. We employed Cox proportional hazards models in predicting disease-free and overall survival. Then, we used time-dependent area under the curve and decision curve analyses to examine the accuracy of the results. RESULTS: Data were collected continuously, and 212 and 85 cases were randomly assigned to training and testing sets, respectively. The area under curve for the prediction of disease-free survival (training-1-year, 0.83; 2-year, 0.81; 3-year, 0.83 vs testing-1-year, 0.65; 2-year, 0.66; 3-year, 0.70), overall survival (training-1-year, 0.86; 2-year, 0.85; 3-year, 0.86 vs testing-1-year, 0.66; 2-year, 0.57; 3-year, 0.70) were determined. The coefficient factors including pathological response, preoperative tumour maximum diameter, preoperative lymph shorter-diameter, preoperative tumour&lymph maximum standardized uptake value, change in tumour standardized uptake value preoperative, and blood related risk factors were favorably associated with prognosis (P < 0.001). CONCLUSIONS: Our prediction model integrating data from preoperative positron emission tomography-CT, preoperative blood parameters, and pathological response was able to make high accuracy predictions for disease-free and overall survival in non-small cell lung cancer patients receiving neoadjuvant immunity with chemical therapy.

3.
Neuroscience ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293730

RESUMEN

Previous studies have demonstrated the roles of both microglia homeostasis and RNA editing in sepsis-associated encephalopathy (SAE), yet their relationship remains to be elucidated. In the current study, we analyzed bulk and single-cell RNA-seq (scRNA) datasets containing 107 brain tissues and microglia samples of mice with microglial depletion and repopulation to explore canonical RNA editing associated with microglia homeostasis and evaluated its role in SAE. Analysis of brain RNA-Seq of mice revealed hallmarks of microglial repopulation, including peak expressions of Apobec1 and Apobec3 at Day 5 and dramatically changed B2m RNA editing. Significant time-dependent changes in brain RNA editing during microglial depletion and microglial repopulation was primarily observed in synaptic genes, such as Tbc1d24 and Slc1a2. ScRNA-Seq revealed heterogeneous RNA editing among microglia subpopulations and their distinct changes associated with microglia homeostasis. Moreover, repopulated microglia from LPS-induced septic mice exhibited intensified up-regulation of Apobec1 and Apobec3, with distinct RNA editing responses to LPS, mainly involved in immune-related pathways. The hippocampus from septic mice induced by peritoneal contamination and infection showed upregulated Apobec1 and Apobec3 expression, and altered RNA editing in immune-related genes, such as B2m and Mier1, and nervous-related lncRNA Meg3 and Snhg11, both of which were repressed by microglial depletion. Moreover, expression of complement-related genes, such as C4b and Cd47, were substantially correlated with RNA editing activity in microglia homeostasis and SAE. Our study demonstrates canonical RNA editing associated with microglia homeostasis, and provides new insight into its potential role in SAE.

4.
Environ Res ; 262(Pt 2): 119943, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276835

RESUMEN

Understanding polychlorinated biphenyl (PCB) degradation in sequential anaerobic-aerobic remediation is crucial for effective remediation strategies. In this study, microcosm and greenhouse experiments were conducted to dissect the effects of organic amendments (carbon-based) and plant treatments (ryegrass) on soil PCB dissipation under oxic and sequential anoxic-oxic conditions. We analyzed the soil bacterial community in greenhouse experiments using high-throughput sequencing to explore plant-pollutant-microbe interactions. Microcosm results showed that organic amendments alone did not facilitate aerobic PCB removal, but significantly accelerated PCB dechlorination under anoxic conditions altering the profiles of PCB congeners. In standard greenhouses, plant treatments substantially increased PCB dissipation to 50.8 ± 3.9%, while organic amendments aided phytoremediation by promoting plant growth, increasing PCB removal to 65.9 ± 3.2%. In sequential anaerobic-aerobic greenhouses, plant growth was inhibited by flooding treatment while flooding stress was markedly alleviated by organic amendments. Plant treatments alone during sequential treatments did not lead to PCB dissipation; however, dissipation was significantly promoted following organic amendments, achieving a removal of 41.2 ± 5.7%. This PCB removal was primarily due to anaerobic dechlorination during flooding (27.8 ± 0.5% removal), rather than from plant growth stimulation in subsequent planting phase. Co-occurrence network and functional prediction analyses revealed that organic amendments recruited specific bacterial clusters with distinct functions under different conditions, especially stimulating plant-microbe interactions and xenobiotics biodegradation pathways in planted systems. The findings provide valuable guidance for the design of practical remediation strategies under various remedy scenarios, such as in arable or paddy fields.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39283715

RESUMEN

BACKGROUND: Phosphodiesterases (PDEs) are enzymes that catalyze the hydrolysis of cyclic adenosine monophosphate AMP (cAMP) and/or cyclic guanosine monophosphate (cGMP). PDE inhibitors can mitigate chronic pain and depression when these disorders occur individually; however, there is limited understanding of their role in concurrent chronic pain and depression. We aimed to evaluate the mechanisms of action of PDE using two mouse models of concurrent chronic pain and depression. METHODS: C57BL/6J mice were subjected to partial sciatic nerve ligation (PSNL) to induce chronic neuropathic pain or injected with complete Freund's adjuvant (CFA) to induce inflammatory pain, and both animals showed depression-like behavior. First, we determined the change in PDE expression in both animal models. Next, we determined the effect of PDE7 inhibitor BRL50481 or hippocampal PDE7A knockdown on PSNL- or CFA-induced chronic pain and depression-like behavior. We also investigated the role of cAMP-protein kinase A (PKA)-cAMP response element binding protein (CREB)-brain-derived neurotrophic factor (BDNF) signaling and neuroinflammation in the effect of PDE7A inhibition on PSNL- or CFA-induced chronic pain and depression-like behavior. RESULTS: This induction of chronic pain and depression in the two animal models upregulated hippocampal PDE7A. Oral administration of PDE7 inhibitor, BRL50481, or hippocampal PDE7A knockdown significantly reduced mechanical hypersensitivity and depression-like behavior. Hippocampal PDE7 inhibition reversed PSNL- or CFA-induced downregulation of cAMP and BDNF and the phosphorylation of PKA, CREB and p65. cAMP agonist forskolin, reversed these changes and caused milder behavioral symptoms of pain and depression. BRL50481 reversed neuroinflammation in the hippocampus in PSNL mice. CONCLUSIONS: Hippocampal PDE7A mediated concurrent chronic pain and depression in both mouse models by inhibiting cAMP-PKA-CREB-BDNF signaling Inhibiting PDE7A or activating cAMP-PKA-CREB-BDNF signaling are potential strategies to treat concurrent chronic pain and depression.

6.
J Virol ; 98(9): e0063524, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39158346

RESUMEN

Flavivirus infection capitalizes on cellular lipid metabolism to remodel the cellular intima, creating a specialized lipid environment conducive to viral replication, assembly, and release. The Japanese encephalitis virus (JEV), a member of the Flavivirus genus, is responsible for significant morbidity and mortality in both humans and animals. Currently, there are no effective antiviral drugs available to combat JEV infection. In this study, we embarked on a quest to identify anti-JEV compounds within a lipid compound library. Our research led to the discovery of two novel compounds, isobavachalcone (IBC) and corosolic acid (CA), which exhibit dose-dependent inhibition of JEV proliferation. Time-of-addition assays indicated that IBC and CA predominantly target the late stage of the viral replication cycle. Mechanistically, JEV nonstructural proteins 1 and 2A (NS1 and NS2A) impede 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) activation by obstructing the liver kinase B1 (LKB1)-AMPK interaction, resulting in decreased p-AMPK expression and a consequent upsurge in lipid synthesis. In contrast, IBC and CA may stimulate AMPK by binding to its active allosteric site, thereby inhibiting lipid synthesis essential for JEV replication and ultimately curtailing viral infection. Most importantly, in vivo experiments demonstrated that IBC and CA protected mice from JEV-induced mortality, significantly reducing viral loads in the brain and mitigating histopathological alterations. Overall, IBC and CA demonstrate significant potential as effective anti-JEV agents by precisely targeting AMPK-associated signaling pathways. These findings open new therapeutic avenues for addressing infections caused by Flaviviruses. IMPORTANCE: This study is the inaugural utilization of a lipid compound library in antiviral drug screening. Two lipid compounds, isobavachalcone (IBC) and corosolic acid (CA), emerged from the screening, exhibiting substantial inhibitory effects on the Japanese encephalitis virus (JEV) proliferation in vitro. In vivo experiments underscored their efficacy, with IBC and CA reducing viral loads in the brain and mitigating JEV-induced histopathological changes, effectively shielding mice from fatal JEV infection. Intriguingly, IBC and CA may activate 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) by binding to its active site, curtailing the synthesis of lipid substances, and thus suppressing JEV proliferation. This indicates AMPK as a potential antiviral target. Remarkably, IBC and CA demonstrated suppression of multiple viruses, including Flaviviruses (JEV and Zika virus), porcine herpesvirus (pseudorabies virus), and coronaviruses (porcine deltacoronavirus and porcine epidemic diarrhea virus), suggesting their potential as broad-spectrum antiviral agents. These findings shed new light on the potential applications of these compounds in antiviral research.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Antivirales , Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Metabolismo de los Lípidos , Replicación Viral , Animales , Metabolismo de los Lípidos/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Virus de la Encefalitis Japonesa (Especie)/efectos de los fármacos , Virus de la Encefalitis Japonesa (Especie)/fisiología , Ratones , Antivirales/farmacología , Humanos , Encefalitis Japonesa/tratamiento farmacológico , Encefalitis Japonesa/virología , Proteínas Quinasas Activadas por AMP/metabolismo , Chalconas/farmacología , Triterpenos/farmacología , Proteínas no Estructurales Virales/metabolismo , Infecciones por Flavivirus/tratamiento farmacológico , Infecciones por Flavivirus/virología , Infecciones por Flavivirus/metabolismo , Flavivirus/efectos de los fármacos , Línea Celular
7.
Sci China Life Sci ; 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39110403

RESUMEN

The growing variety of RNA classes, such as mRNAs, lncRNAs, and circRNAs, plays pivotal roles in both developmental processes and various pathophysiological conditions. Nonetheless, our comprehension of RNA functions in live organisms remains limited due to the absence of durable and effective strategies for directly influencing RNA levels. In this study, we combined the CRISPR-RfxCas13d system with sperm-like stem cell-mediated semi-cloning techniques, which enabled the suppressed expression of different RNA species. This approach was employed to interfere with the expression of three types of RNA molecules: Sfmbt2 mRNA, Fendrr lncRNA, and circMan1a2(2,3,4,5,6). The results confirmed the critical roles of these RNAs in embryonic development, as their loss led to observable phenotypes, including embryonic lethality, delayed embryonic development, and embryo resorption. In summary, our methodology offers a potent toolkit for silencing specific RNA targets in living organisms without introducing genetic alterations.

9.
J Phys Chem Lett ; 15(35): 8949-8955, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39185691

RESUMEN

Engineering of the interface between the perovskite and hole transport layer (HTL) has been crucial to achieving high performance. In this study, two interfacial materials, MN-CZ and CN-CZ, are designed by systematically regulating the group substitution site to study the relationship between spatial conformation and the passivation effect. The passivation groups of CN-CZ molecules exhibit a stronger "vector addition" effect, resulting in larger molecular dipoles and enhanced defect passivation and energy level regulation effects. Consequently, the CN-CZ-based perovskite solar cell (PSC) shows a high efficiency of 23.8%, which is much higher than that of the reference device. Meanwhile, the humidity and thermal stability of the unencapsulated device have been significantly improved.

10.
Chem Sci ; 15(33): 13191-13200, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39183934

RESUMEN

The accurate construction of mono-, bi- and multi-layer networks has been an important challenge, especially for bi- and multi-layer networks. Monolayer, bilayer, sandwich bilayer, four-layer, and multi-layer two-dimensional pillararene-type metal-organic coordination networks have been constructed from functionalized pillar[5]arene and pillar[6]arene by utilizing the coordination interaction of cobalt and copper ions and combining with temperature control and guest induction. These two-dimensional coordination networks exhibit the excellent plasticity of pillararenes and structural variety, which are characterized by X-ray single crystal diffraction and PXRD, confirming that pillararenes units can function as excellent tunable scaffolds for structural regulation. Two-dimensional chiral double-layer structure products are also constructed from R- and S-pillar[6]arene, which are obtained by high-performance liquid chromatography. Atomic force microscopic imaging confirms the thicknesses of these networks. Moreover, these networks also exhibit high iodine adsorption capacity in aqueous environments at ambient temperature. The monolayer, bilayer, sandwich bilayer, four-layer and multi-layer structures of the pillararene-type networks represent a new facile supramolecular self-assembly strategy and platform for designing more mono-, bi- and multi-layer two-dimensional nanomaterials and chiral two-dimensional double-layer structures provide a new method for the construction of more two-dimensional chiral polymers.

11.
Exp Neurol ; 380: 114909, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39097074

RESUMEN

Functional and pathological recovery after spinal cord injury (SCI) is often incomplete due to the limited regenerative capacity of the central nervous system (CNS), which is further impaired by several mechanisms that sustain tissue damage. Among these, the chronic activation of immune cells can cause a persistent state of local CNS inflammation and damage. However, the mechanisms that sustain this persistent maladaptive immune response in SCI have not been fully clarified yet. In this study, we integrated histological analyses with proteomic, lipidomic, transcriptomic, and epitranscriptomic approaches to study the pathological and molecular alterations that develop in a mouse model of cervical spinal cord hemicontusion. We found significant pathological alterations of the lesion rim with myelin damage and axonal loss that persisted throughout the late chronic phase of SCI. This was coupled by a progressive lipid accumulation in myeloid cells, including resident microglia and infiltrating monocyte-derived macrophages. At tissue level, we found significant changes of proteins indicative of glycolytic, tricarboxylic acid cycle (TCA), and fatty acid metabolic pathways with an accumulation of triacylglycerides with C16:0 fatty acyl chains in chronic SCI. Following transcriptomic, proteomic, and epitranscriptomic studies identified an increase of cholesterol and m6A methylation in lipid-droplet-accumulating myeloid cells as a core feature of chronic SCI. By characterizing the multiple metabolic pathways altered in SCI, our work highlights a key role of lipid metabolism in the chronic response of the immune and central nervous system to damage.


Asunto(s)
Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Proteómica , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Animales , Ratones , Metabolismo de los Lípidos/fisiología , Femenino , Lipidómica , Transcriptoma , Multiómica
12.
Environ Sci Technol ; 58(29): 12933-12942, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39003765

RESUMEN

Perfluoroethylcyclohexane sulfonate (PFECHS) is an emerging per- and polyfluoroalkyl substance used to replace perfluorooctane sulfonate (PFOS), mainly in aircraft hydraulic fluids. However, previous research indicates the potential neurotoxicity of this replacement chemical. In this study, marine medaka (Oryzias melastigma) was exposed to environmentally relevant concentrations of PFECHS (concentrations: 0, 0.08, 0.26, and 0.91 µg/L) from the embryonic stage for 90 days. After exposure, the brain and eyes of the medaka were collected to investigate the bioconcentration potential of PFECHS stereoisomers and their effects on the nervous systems. The determined bioconcentration factors (BCFs) of PFECHS ranged from 324 ± 97 to 435 ± 89 L/kg and from 454 ± 60 to 576 ± 86 L/kg in the brain and eyes of medaka, respectively. The BCFs of trans-PFECHS were higher than those of cis-PFECHS. PFECHS exposure significantly altered γ-aminobutyric acid (GABA) levels in the medaka brain and disrupted the GABAergic system, as revealed by proteomics, implying that PFECHS can disturb neural signal transduction like PFOS. PFECHS exposure resulted in significant alterations in multiple proteins associated with eye function in medaka. Abnormal locomotion was observed in PFECHS-exposed medaka larvae, which was rescued by adding exogenous GABA, suggesting the involvement of disrupted GABA signaling pathways in PFECHS neurotoxicity.


Asunto(s)
Oryzias , Animales , Oryzias/metabolismo , Contaminantes Químicos del Agua/toxicidad
14.
J Phys Chem Lett ; 15(28): 7214-7220, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38973732

RESUMEN

The oxidation of Sn2+ can occur even after the completion of the perovskite crystallization in a low oxygen environment. Concerning this, the natural antioxidant vitamin C (VC) is introduced to the surface of Sn-Pb mixed perovskite using a postprocessing method to achieve the purpose of inhibiting Sn2+ oxidation and enhancing perovskite solar cells performance. The results indicate that the VC could effectively inhibit Sn2+ oxidation and heal the vacancy defects of the annealed perovskite film. Meanwhile, the introduction of VC significantly improves the morphology and crystalline quality of the perovskite films. After optimization, the highest power conversion efficiency of the VC-treated Sn-Pb mixed device increased to 20.44%. Moreover, the VC-treated unencapsulated device shows excellent long-term stability, retaining 75.3% of its initial efficiency after 800 h of aging in a N2 atmosphere, which is much higher than the 20.1% of the control device.

15.
Heliyon ; 10(12): e32595, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988518

RESUMEN

Objective: To investigate the prevalence of subthreshold depression among Chinese college students and to explore the related factors. Methods: The research subjects were Chinese college students participating in the "2022 Psychology and Behavior Investigation of Chinese Residents (PBICR-2022)". Data on respondents' general characteristics, quality of life, perceived pressure, family communication, perceived social support, self-efficacy, and depression status were gathered. To investigate the association between each variable and the risk of subthreshold depression, statistical analyses, including chi-square tests and rank sum tests were conducted. Furthermore, a binary stepwise logistic regression was employed to establish the regression model of the factors related to subthreshold depression among Chinese college students. Results: A prevalence of subthreshold depression of about 39.7 % was found among the 8934 respondents. Logistic regression analysis revealed that respondents who are female, have chronic diseases, are in debt, experience significant impacts from epidemic control policies, have lower self-assessed quality of life, experience challenges in family communication, perceive lower social support, have lower self-efficacy, and feel higher perceived pressure are more likely to develop subthreshold depression compared to the control group. (P < 0.05). Conclusion: The prevalence rate of subthreshold depression among Chinese college students was found to be approximately 40 %. Female college students suffering from chronic diseases, with households in debt, greatly impacted by epidemic control policies, and experiencing high perceived stress, may be at risk for subthreshold depression among Chinese college students. On the other hand, strong family communication, perceived social support, and self-efficacy were identified as potential protective factors. In order to facilitate timely screening, diagnosis, and treatment of subthreshold depression in Chinese college students, it is crucial for the government, local communities, colleges, and families to prioritize the mental health of college students and implement targeted measures accordingly.

16.
AMB Express ; 14(1): 65, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842638

RESUMEN

Microbial degradation of fluorinated compounds raised significant attention because of their widespread distribution and potential environmental impacts. Here, we report a bacterial isolate, Rhodococcus sp. NJF-7 capable of defluorinating monofluorinated medium-chain length alkanes. This isolate consumed 2.29 ± 0.13 mmol L- 1 of 1-fluorodecane (FD) during a 52 h incubation period, resulting in a significant release of inorganic fluoride amounting to 2.16 ± 0.03 mmol L- 1. The defluorination process was strongly affected by the initial FD concentration and pH conditions, with lower pH increasing fluoride toxicity to bacterial cells and inhibiting enzymatic defluorination activity. Stoichiometric conversion of FD to fluoride was observed at neutral pH with resting cells, while defluorination was significantly lower at reduced pH (6.5). The discovery of the metabolites decanoic acid and methyl decanoate suggests that the initial attack by monooxygenases may be responsible for the biological defluorination of FD. The findings here provide new insights into microbial defluorination processes, specifically aiding in understanding the environmental fate of organic semi-fluorinated alkane chemicals.

18.
Heliyon ; 10(11): e31625, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38828325

RESUMEN

One of the significant topics in the field of the Internet of Things (IoT) pertains to the interaction and information sharing among people. The utilization of the Border Gateway Protocol (BGP) stack enhances the integration of web protocols and sensor networks, leading to greater accessibility. However, the BGP protocol stack introduces substantial overhead to messages transmitted at each layer, resulting in increased data overhead and energy consumption in networks by several orders of magnitude. This paper proposes a method to reduce the overhead on small and medium-sized packets. In multi-temporal networks utilizing BGP, scheduling and aggregating BGP packets at sensor nodes help achieve specific objectives. Various research methodologies and measures are employed to facilitate this, including request classification, BGP response prioritization within the network, determination of maximum acceptable delay, and overall network management. Synchronization and temporal integration of received messages at sensor nodes are performed, considering the maximum allowable delay for each message and the availability of the destination to process the accumulated messages. The evaluation results of the proposed method demonstrate a significant reduction in energy consumption and network traffic, particularly in monitoring applications within multi-stage networks. The protocol stack used is derived from the BGP standard.

19.
Small ; 20(33): e2311507, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38856024

RESUMEN

The immunosuppressive characteristics and acquired immune resistance can restrain the therapy-initiated anti-tumor immunity. In this work, an antibody free programmed death receptor ligand 1 (PD-L1) downregulator (designated as CeSe) is fabricated to boost photodynamic activated immunotherapy through cyclin-dependent kinase 5 (CDK5) inhibition. Among which, FDA approved photosensitizer of chlorin e6 (Ce6) and preclinical available CDK5 inhibitor of seliciclib (Se) are utilized to prepare the nanomedicine of CeSe through self-assembly technique without drug excipient. Nanoscale CeSe exhibits an increased stability and drug delivery efficiency, contributing to intracellular production of reactive oxygen species (ROS) for robust photodynamic therapy (PDT). The PDT of CeSe can not only suppress the primary tumor growth, but also induce the immunogenic cell death (ICD) to release tumor associated antigens. More importantly, the CDK5 inhibition by CeSe can downregulate PD-L1 to re-activate the systemic anti-tumor immunity by decreasing the tumor immune escape and therapy-induced acquired immune resistance. This work provides an antibody free strategy to activate systemic immune response for metastatic tumor treatment, which may accelerate the development of translational nanomedicine with sophisticated mechanism.


Asunto(s)
Antígeno B7-H1 , Quinasa 5 Dependiente de la Ciclina , Inmunoterapia , Fotoquimioterapia , Fotoquimioterapia/métodos , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inhibidores , Inmunoterapia/métodos , Animales , Quinasa 5 Dependiente de la Ciclina/metabolismo , Quinasa 5 Dependiente de la Ciclina/antagonistas & inhibidores , Humanos , Línea Celular Tumoral , Regulación hacia Abajo/efectos de los fármacos , Ratones , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Porfirinas/química , Porfirinas/farmacología , Porfirinas/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Clorofilidas
20.
Mar Pollut Bull ; 205: 116635, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936000

RESUMEN

This study provided a systematic investigation of microplastics in Hong Kong's surface marine waters during the pandemic from 2019 to 2021. Microplastics (2.07 ± 4.00 particles/m3) exhibited significant temporal variations with higher abundance in the wet season, without a consistent trend after the mandatory mask-wearing requirement was announced. The impact of pandemic restrictions on microplastic distribution was found to be relatively minor. However, significant correlations between microplastic abundances and rainfall highlighted the substantial contribution of local emissions through surface runoff. Notably, sites in closer proximity to the Pearl River Delta exhibited higher microplastic abundances, indicating their association with emission sources. The influence of rainfall and adverse weather on marine microplastic loads demonstrated different sensitivities among various locations but can generally last for one month. These results revealed the impact of seasonal rainfall on coastal microplastics and emphasized the need for efforts to reduce microplastic discharge from land-based sources.


Asunto(s)
Monitoreo del Ambiente , Microplásticos , Lluvia , Ríos , Contaminantes Químicos del Agua , Hong Kong , Contaminantes Químicos del Agua/análisis , Microplásticos/análisis , Ríos/química , Agua de Mar/química , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA