RESUMEN
Cultivated strawberry (Fragaria × ananassa) is a popular, economically important fruit. The ripening of the receptacle (pseudocarp), the main edible part, depends on endogenously produced abscisic acid (ABA) and is suppressed by the high level of auxin produced from achenes (true fruit) during early development. However, the mechanism whereby auxin regulates receptacle ripening through inhibiting ABA biosynthesis remains unclear. Here, we identified AUXIN RESPONSE FACTOR 2 (FaARF2), which showed decreased expression with reduced auxin content in the receptacle, leading to increased ABA levels and accelerated ripening. Dual-luciferase, yeast one-hybrid, and electrophoretic mobility shift assays demonstrated that FaARF2 could bind to the AuxRE element in the promoter of 9-CIS-EPOXYCAROT-ENOID DIOXYGENASE 1 (FaNCED1), a key ABA biosynthetic gene, to suppress its transcriptional activity. Transiently overexpressing FaARF2 in the receptacles decreased FaNCED1 expression and ABA levels, resulting in inhibition of receptacle ripening and of development of quality attributes, such as pigmentation, aroma, and sweetness. This inhibition caused by overexpressing FaARF2 was partially recovered by the injection of exogenous ABA; conversely, transient silencing of FaARF2 using RNA interference produced the opposite results. The negative targeting of FaNCED1 by FaARF2 is a key link between auxin-ABA interactions and regulation of strawberry ripening.
RESUMEN
With the rapid development of flexible wearable electronics, the demand for stretchable energy storage devices has surged. In this work, a novel gradient-layered architecture was design based on single-pore hollow lignin nanospheres (HLNPs)-intercalated two-dimensional transition metal carbide (Ti3C2Tx MXene) for fabricating highly stretchable and durable supercapacitors. By depositing and inserting HLNPs in the MXene layers with a bottom-up decreasing gradient, a multilayered porous MXene structure with smooth ion channels was constructed by reducing the overstacking of MXene lamella. Moreover, the micro-chamber architecture of thin-walled lignin nanospheres effectively extended the contact area between lignin and MXene to improve ion and electron accessibility, thus better utilizing the pseudocapacitive property of lignin. All these strategies effectively enhanced the capacitive performance of the electrodes. In addition, HLNPs, which acted as a protective phase for MXene layer, enhanced mechanical properties of the wrinkled stretchable electrodes by releasing stress through slip and deformation during the stretch-release cycling and greatly improved the structural integrity and capacitive stability of the electrodes. Flexible electrodes and symmetric flexible all-solid-state supercapacitors capable of enduring 600% uniaxial tensile strain were developed with high specific capacitances of 1273 mF cm-2 (241 F g-1) and 514 mF cm-2 (95 F g-1), respectively. Moreover, their capacitances were well preserved after 1000 times of 600% stretch-release cycling. This study showcased new possibilities of incorporating biobased lignin nanospheres in energy storage devices to fabricate stretchable devices leveraging synergies among various two-dimensional nanomaterials.
RESUMEN
In traditional hydrogenation, where H2 and substrates with unsaturated bonds are activated on the same catalyst (contact mode), competitive hydrogenation of multiple reducible groups often occurs. We employ an unbiased H-cell for selective hydrogenation of the nitro group when multiple reducible groups are present. The setup spatially separates H2 and nitroarenes into two chambers connected by a proton-exchange membrane, thus adding barriers for a Langmuir-Hinshelwood-type mechanism that is common in thermocatalytic hydrogenation. Through a unique proton/electron transfer pathway that is specific to nitro functional group reduction to hydroxylamine, side reactions like CâC, CâO, and C≡C bond hydrogenation are fully avoided. Using Pd/C for H2 activation, and CNT for selective proton/electron transfer to -NO2 groups while being inert to C≡C, CâC, and CâO hydrogenation, the system effectively eliminates the competitive hydrogenation, achieving 100% nitro-group reduction selectivity in the hydrogenation of various nitroarenes, in sharp contrast to negligible selectivity over the same catalysts in a batch reactor under contact mode. This device enables selectivity control in hydrogenation reactions, moving beyond the traditional focus on catalyst active site engineering.
RESUMEN
Traditional methods for the aerobic oxidation of methane to methanol frequently require the use of noble metal catalysts or flammable H2-O2 mixtures. While electrochemical methods enhance safety and may avoid the use of noble metals, these processes suffer from low yields due to limited current density and/or low selectivity. Here, we design an electrothermal process to conduct aerobic oxidation of methane to methanol at room temperature using phosphotungstic acid (PTA) as a redox mediator. When electrochemically reduced, PTA activates methane with O2 to produce methanol selectively. The optimum productivity reaches 29.45 [[EQUATION]] with approximately 20.3% overall electron yield. Under continuous operation, we achieved 19.90 [[EQUATION]] catalytic activity, over 74.3% methanol selectivity, and 10 hours durability. This approach leverages reduced PTA to initiate thermal catalysis in solution phase, addressing slow methane oxidation kinetics and preventing overoxidations on electrode surfaces. The current density towards methanol production increased over 40 times compared with direct electrochemical processes. The in-situ generated hydroxyl radical, from the reaction of reduced PTA and oxygen, plays an important role in the methane conversion. This study demonstrates reduced polyoxotungstate as a viable platform to integrate thermo- and electrochemical methane oxidation at ambient conditions.
RESUMEN
BACKGROUND: The ability of socially assistive robots (SARs) to treat dementia and Alzheimer's disease has been verified. Currently, to increase the range of their application, there is an increasing amount of interest in using SARs to relieve pain and negative emotions among children in routine medical settings. However, there is little consensus regarding the use of these robots. OBJECTIVE: This study aimed to evaluate the effect of SARs on pain and negative affectivity among children undergoing invasive needle-based procedures. DESIGN: This study was a systematic review and meta-analysis of randomized controlled trials that was conducted in accordance with the Cochrane Handbook guidelines. METHODS: The PubMed, CINAHL, Web of Science, Cochrane Library, Embase, CNKI, and WanFang databases were searched from inception to January 2024 to identify relevant randomized controlled trials (RCTs). We used the Cochrane Risk of Bias tool 2.0 (RoB2.0) to assess the risk of bias among the included studies, and we used RevMan 5.4 software to conduct the meta-analysis. The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) framework was used to assess the quality of the evidence. RESULTS: Ten RCTs involving 815 pediatric subjects were selected for this review and reported outcomes related to pain and emotions during IV placement, port needle insertion, flu vaccination, blood sampling, and dental treatment. Children undergoing needle-related procedures with SARs reported less anxiety (SMD= -0.36; 95% CI= -0.64, -0.09) and fewer distressed avoidance behaviors (SMD= -0.67; 95% CI= -1.04, -0.30) than did those receiving typical care. There were nonsignificant differences between these groups in terms of in pain (SMD = -0.02; 95% CI = - 0.81, 0.78) and fear (SMD = 0.38; 95% CI= -0.06, 0.82). The results of exploratory subgroup analyses revealed no statistically significant differences based on the intervention type of robots or anesthetic use. CONCLUSIONS: The use of SARs is a promising intervention method for alleviating anxiety and distress among children undergoing needle-related procedures. However, additional high-quality randomized controlled trials are needed to further validate these conclusions. TRIAL REGISTRATION: The protocol of this study has been registered in the database PROSPERO (registration ID: CRD42023413279).
Asunto(s)
Agujas , Dolor Asociado a Procedimientos Médicos , Robótica , Niño , Humanos , Agujas/efectos adversos , Manejo del Dolor/métodos , Dolor Asociado a Procedimientos Médicos/etiología , Dolor Asociado a Procedimientos Médicos/prevención & control , Ensayos Clínicos Controlados Aleatorios como AsuntoRESUMEN
Wearable strain transducers are poised to transform the field of healthcare owing to the promise of personalized devices capable of real-time collection of human physiological health indicators. For instance, monitoring patients' progress following injury and/or surgery during physiotherapy is crucial but rarely performed outside clinics. Herein, multifunctional liquid-free ionic elastomers are designed through the volume effect and the formation of dynamic hydrogen bond networks between polyvinyl alcohol (PVA) and weak acids (phosphoric acid, phytic acid, formic acid, citric acid). An ultra-stretchable (4600% strain), highly conducting (10 mS cm-1), self-repairable (77% of initial strain), and adhesive ionic elastomer is obtained at high loadings of phytic acid (4:1 weight to PVA). Moreover, the elastomer displayed durable performances, with intact mechanical properties after a year of storage. The elastomer is used as a transducer to monitor human motions in a device comprising an ESP32-based development board. The device detected walking and/or running biomechanics and communicated motion-sensing data (i.e., amplitude, frequency) wirelessly. The reported technology can also be applied to other body parts to monitor recovery after injury and/or surgery and inform practitioners of motion biomechanics remotely and in real time to increase convalescence effectiveness, reduce clinic appointments, and prevent injuries.
RESUMEN
The integration of bio-based materials into triboelectric nanogenerators (TENGs) for energy harvesting from human body motions has sparked considerable research attention. Here, a silanated cellulose nanofibril (SCNF) aerogel is reported for structurally reliable TENGs and reversely compressible Taekwondo scoring sensors under repeated impacts. The preparation of the aerogel involves silanizing cellulose nanofibers (CNFs) with vinyltrimethoxysilane (VTMS), following by freeze-drying and post-heating treatment. The SCNF aerogel with crosslinked physico-chemical bonding and highly porous network is found to exhibit superior mechanical strength and reversible compressibility as well as enhanced water repellency and electron-donating ability. The TENG having a tribo-positive SCNF layer exhibits exceptional triboelectric performances, generating a voltage of 270 V, current of 11 µA, and power density of 401.1 mW m-2 under an applied force of 8 N at a frequency of 5 Hz. With its inherent merits in material composition, structural configuration, and device sensitivity, the SCNF TENG demonstrates the capability to seamlessly integrate into a Taekwondo protection gear, serving as an efficient self-powered sensor for monitoring hitting scores. This study highlights the significant potential of a facilely fabricated SCNF aerogel for the development of high-performance, bio-friendly, and cost-effective Bio-TENGs, enabling their application as self-powered wearable devices and sports engineering sensors.
RESUMEN
Electrocatalytic water splitting is a promising solution for generating clean hydrogen. Transition metal compounds are among the most extensively investigated catalysts developed to date for water oxidation in alkaline media, a process also known as the oxygen evolution reaction (OER). However, the application of these catalysts was constrained by insufficient stability arising from surface oxidation and metal dissolution under high OER potential. In this work, we developed a facile approach using urea-based gel as the precursor of preparing a series of multimetallic carbonitride particles which were encapsulated by N-doped carbon (NC). In particular, (MoCoFeNiZr)CN@NC core-shell structure delivered a low overpotential of 246 mV at a current density of 10 mA cm-2 in 1 M KOH during OER. Importantly, operando differential electrochemical mass spectrometry (DEMS), together with multiple microscopic and spectroscopic analyses, indicated that the NC shells effectively maintained the crystalline stability of carbonitride via suppressing the surface reconstruction during catalysis. The highly graphitic NC also demonstrates excellent stability against oxidation. This work shows a promising strategy of stabilizing electrocatalyst at high anodic potential, paving the way for the development of robust electrode materials for energy conversion.
RESUMEN
Graphene oxide (GO), beyond its specialized industrial applications, is rapidly gaining prominence as a nanomaterial for modern agriculture. However, its specific effects on seed priming for salinity tolerance and yield formation in crops remain elusive. Under both pot-grown and field-grown conditions, this study combined physiological indices with transcriptomics and metabolomics to investigate how GO affects seed germination, seedling salinity tolerance, and peanut pod yield. Peanut seeds were firstly treated with 400 mg L⻹ GO (termed GO priming). At seed germination stage, GO-primed seeds exhibited higher germination rate and percentage of seeds with radicals breaking through the testa. Meanwhile, omics analyses revealed significant enrichment in pathways associated with carbon and nitrogen metabolisms in GO-primed seeds. At seedling stage, GO priming contributed to strengthening plant growth, enhancing photosynthesis, maintaining the integrity of plasma membrane, and promoting the nutrient accumulation in peanut seedlings under 200 mM NaCl stress. Moreover, GO priming increased the activities of antioxidant enzymes, along with reduced the accumulation of reactive oxygen species (ROS) in response to salinity stress. Furthermore, the differentially expressed genes (DEGs) and differentially accumulated metabolites (DAMs) of peanut seedlings under GO priming were mainly related to photosynthesis, phytohormones, antioxidant system, and carbon and nitrogen metabolisms in response to soil salinity. At maturity, GO priming showed an average increase in peanut pod yield by 12.91% compared with non-primed control. Collectively, our findings demonstrated that GO plays distinguish roles in enhancing seed germination, mitigating salinity stress, and boosting pod yield in peanut plants via modulating multiple physiological processes.
Asunto(s)
Arachis , Germinación , Grafito , Tolerancia a la Sal , Plantones , Semillas , Arachis/metabolismo , Arachis/efectos de los fármacos , Arachis/fisiología , Arachis/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/metabolismo , Germinación/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Fotosíntesis/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Salinidad , Transcriptoma/efectos de los fármacos , Antioxidantes/metabolismoRESUMEN
Bio-composite foams based on Epoxidized Natural Rubber (ENR) filled with lignin (LG) and ammonium polyphosphate (APP) were fabricated via batch foaming. The addition of APP accelerated the foaming process at lower temperatures. Pre-mixing induced ionic and hydrogen bonding between the LG and the APP particles, which reduced crosslinking between LG and ENR. The resulting ENR bio-composite foams with LG/APP exhibited a significant increase in compressive strength (up to 700 %) and modulus (up to 600 %) compared to the ENR foam baseline. Furthermore, the LG/APP foams demonstrated lower thermal conductivity than both the ENR foam baseline and foams containing only LG or APP, attributed to optimal thermal conduction in the solid phase and convection within the pore cells. The combination of APP and LG produced synergistic effects, with phosphorus (from APP) and high carbon content (from LG) enhancing flame-retardant efficiency. This study highlights the potential of these sustainable bio-composite foams for applications requiring enhanced thermal insulation and flame retardancy attributes for insulation and other practical applications.
RESUMEN
Intermetallic nanoparticles (NPs) possess significant potentials for catalytic applications, yet their production presents challenges as achieving the disorder-to-order transition during the atom ordering process involves overcoming a kinetic energy barrier. Here, we demonstrate a robust approach utilizing atomic gas-migration for the in-situ synthesis of stable and homogeneous intermetallic alloys for propane dehydrogenation (PDH). This approach relies on the physical mixture of two separately supported metal species in one reactor. The synthesized platinum-zinc intermetallic catalysts demonstrate exceptional stability for 1300 h in continuous propane dehydrogenation under industrially relevant industrial conditions, with extending 95% propylene selectivity and propane conversions approaching thermodynamic equilibrium values at 550-600 oC. In situ characterizations and density functional theory/molecular dynamics simulation reveal Zn atoms adsorb on the particle surface and then diffuse inward, aiding in the formation of ultrasmall and highly ordered intermetallic alloys. This in-situ gas-migration strategy is applicable to a wide range of intermetallic systems.
RESUMEN
CO2 utilization is a critical aspect of achieving a sustainable carbon cycle, particularly in the context of global efforts to achieve carbon neutrality. Drawing inspiration from geological chemistry, Fe-based hydrothermal CO2 reduction into valuable chemicals has emerged as a promising CO2 utilization strategy. However, the lack of a sustainable and direct Fe regeneration approach presents a notable challenge to the widespread adoption of this strategy. Herein, we propose a method for the direct reduction of Fe3O4 to Fe using biodiesel-waste glycerol. This method yields a remarkable 97.9â wt % of reduced Fe, which exhibits a high activity for CO2 (HCO3 -) reduction to formic acid, maintaining a level of ~90 %. Our investigation reveals that the Fe3O4 reduction involves a direct hydrogen transfer from hydroxyl groups to lattice O atoms on the surface of Fe3O4, forming reductive H species. The presence of a polyhydroxy structure in glycerol facilitates the stabilization of surface H species, thereby enhancing the reduction efficiency process. Based on this mechanism, we explore the potential of using various polyols derived from woody biomass, which exhibit similar capabilities for the reduction of Fe3O4 as glycerol. These findings establish an efficient and sustainable Fe3O4/Fe redox cycle, which integrates waste biomass into circular carbon economy solutions and contributes to the overall net carbon benefit of CO2 utilization.
RESUMEN
Atomically dispersed single atom (SA) and atomic cluster (AC) metallic materials attract tremendous attentions in various fields. Expanding monometallic SA and AC to multimetallic SA/AC composites opens vast scientific and technological potentials yet exponentially increasing the synthesis difficulty. Here, we present a general energy-selective-clustering methodology to build the largest reported library of carbon supported bi-/multi-metallic SA/AC materials. The discrepancy in cohesive energy results into selective metal clustering thereby driving the symbiosis of multimetallic SA or/and AC. The library includes 23 bimetallic SA/AC composites, and expanded compositional space of 17 trimetallic, quinary-metallic, septenary-metallic SA/AC composites. We chose bimetallic M1SAM2AC to demonstrate the electrocatalysis utility. Unique decoupled active sites and inter-site synergy lead to 8/47 mV overpotential at 10 mA cm-2 for alkaline/acidic hydrogen evolution and over 1000 h durability in water electrolyzer. Moreover, delicate modulations towards composition and configuration yield high-performance catalysts for multiple electrocatalysis systems. Our work broadens the family of atomically dispersed materials from monometallic to multimetallic and provides a platform to explore the complex composition induced unconventional effects.
RESUMEN
Drug-resistant Tuberculosis (TB) is a global public health problem. Resistance to rifampicin, the most effective drug for TB treatment, is a major growing concern. The etiological agent, Mycobacterium tuberculosis (Mtb), has a cluster of ATP-binding cassette (ABC) transporters which are responsible for drug resistance through active export. Here, we describe studies characterizing Mtb Rv1217c-1218c as an ABC transporter that can mediate mycobacterial resistance to rifampicin and have determined the cryo-electron microscopy structures of Rv1217c-1218c. The structures show Rv1217c-1218c has a type V exporter fold. In the absence of ATP, Rv1217c-1218c forms a periplasmic gate by two juxtaposed-membrane helices from each transmembrane domain (TMD), while the nucleotide-binding domains (NBDs) form a partially closed dimer which is held together by four salt-bridges. Adenylyl-imidodiphosphate (AMPPNP) binding induces a structural change where the NBDs become further closed to each other, which downstream translates to a closed conformation for the TMDs. AMPPNP binding results in the collapse of the outer leaflet cavity and the opening of the periplasmic gate, which was proposed to play a role in substrate export. The rifampicin-bound structure shows a hydrophobic and periplasm-facing cavity is involved in rifampicin binding. Phospholipid molecules are observed in all determined structures and form an integral part of the Rv1217c-1218c transporter system. Our results provide a structural basis for a mycobacterial ABC exporter that mediates rifampicin resistance, which can lead to different insights into combating rifampicin resistance.
Asunto(s)
Transportadoras de Casetes de Unión a ATP , Proteínas Bacterianas , Microscopía por Crioelectrón , Farmacorresistencia Bacteriana , Mycobacterium tuberculosis , Rifampin , Rifampin/farmacología , Rifampin/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/ultraestructura , Transportadoras de Casetes de Unión a ATP/genética , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Proteínas Bacterianas/genética , Modelos Moleculares , Adenilil Imidodifosfato/metabolismoRESUMEN
Anthocyanins are natural flavonoids with a high antioxidant power and many associated health benefits, but most rice produce little amounts of these compounds. In this study, 141 MYB transcription factors in 15 chromosomes, including the nucleus-localised ZlMYB1 (Zla03G003370) and ZlMYB2 (Zla15G015220), were discovered in Zizania latifolia. Overexpression of ZlMYB1 or ZlMYB2 in rice seeds induced black pericarps, and flavonoid content, antioxidant capacity, and α-glucosidase and tyrosinase inhibition effects significantly increased compared to those in the control seeds. ZlMYB1 and ZlMYB2 overexpression induced the upregulation of 764 and 279 genes, respectively, and the upregulation of 162 and 157 flavonoids, respectively, linked to a black pericarp phenotype. The expression of flavonoid 3'-hydroxylase and UDP-glycose flavonoid glycosyltransferase, as well as the activities of these enzymes, increased significantly in response to ZlMYB1 or ZlMYB2 overexpression. This study systematically confirmed that the overexpression of ZlMYB1 and ZlMYB2 promotes flavonoid biosynthesis (especially of anthocyanins) in rice.
Asunto(s)
Antioxidantes , Flavonoides , Monofenol Monooxigenasa , Oryza , Proteínas de Plantas , Semillas , alfa-Glucosidasas , Semillas/química , Semillas/genética , Semillas/metabolismo , Semillas/enzimología , Oryza/genética , Oryza/química , Oryza/metabolismo , Oryza/enzimología , Flavonoides/metabolismo , Flavonoides/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , alfa-Glucosidasas/genética , alfa-Glucosidasas/metabolismo , alfa-Glucosidasas/química , Antioxidantes/metabolismo , Antioxidantes/química , Monofenol Monooxigenasa/metabolismo , Monofenol Monooxigenasa/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/química , Regulación de la Expresión Génica de las Plantas , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/enzimologíaRESUMEN
The local coordination environment of single atom catalysts (SACs) often determines their catalytic performance. To understand these metal-support interactions, we prepared Pt SACs on cerium dioxide (CeO2) cubes, octahedra and rods, with well-structured exposed crystal facets. The CeO2 crystals were characterized by SEM, TEM, pXRD, and N2 sorption, confirming the shape-selective synthesis, identical bulk structure, and variations in specific surface area, respectively. EPR, XPS, TEM and XANES measurements showed differences in the oxygen vacancy density following the trend rods > octahedra > cubes. AC-HAADF-STEM, XPS and CO-DRIFTS measurements confirmed the presence of only single Pt2+ sites, with different surface platinum surface concentrations. We then compared the performance of the three catalysts in ammonia borane hydrolysis. Precise monitoring of reaction kinetics between 30-80 °C gave Arrhenius plots with hundreds of data points. All plots showed a clear inflection point, the temperature of which (rods > octahedra > cubes) correlates to the energy barrier of ammonia borane diffusion to the Pt sites. These activity differences reflect variations in the - facet dependent - degree of stabilization of intermediates by surface oxygen lone pairs and surface-metal binding strength. Our results show how choosing the right macroscopic support shape can give control over single atom catalysed reactions on the microscopic scale.
RESUMEN
Objective: Diabetic nephropathy (DN) is a serious complication that may occur during the later stages of diabetes, and can be further exacerbated by podocyte damage. Piperazine ferulate (PF) has well-defined nephroprotective effects and is used clinically in the treatment of chronic nephritis and other kidney diseases. However, the renoprotective effects and mechanisms of PF on DN are not clear. This study aims to investigate the protective effect of PF on DN and its mechanism of action, to inform the clinical application of PF in DN treatment. Methods: Network pharmacology was performed to predict the mechanism of action of PF in DN. Male Sprague Dawley rats were intraperitoneally injected with STZ (60 mg/kg) to establish a DN model, and then assessed for renal injury after 12 weeks of administration. In vitro, rat podocytes were treated with 25 mmol/L glucose and cultured for 24 h, followed by an assessment of cell injury. Results: Our results showed that PF significantly improved renal function, reduced renal pathological changes, decreased inflammatory response, and alleviated podocyte damage in DN rats. PF also attenuated glucose-induced podocyte injury in vitro. Regarding molecular mechanisms, our study demonstrated that PF downregulated the expression of genes and proteins related to AGE-RAGE-mediated inflammatory signaling. Conclusion: In summary, PF exerts its renoprotective effects by decreasing inflammation and protecting against podocyte injury through the inhibition of the AGE/RAGE/NF-κB/NLRP3 pathway. Overall, these data support the clinical potential of PF as a renoprotective agent in DN.
RESUMEN
Glycogen synthase kinase 3ß (GSK-3ß) is a potential therapeutic target for the treatment of a variety of human diseases. Here, we report the design and synthesis of a series of thieno[3,2-c]pyrazol-urea derivatives and evaluation of their GSK-3ß inhibitory activity. Among these analogues, the compound without substitution on terminal phenyl ring (3a) was found to be the most potent GSK-3ß inhibitor with an IC50 of 74.4 nM, while substitution on the terminal phenyl (3b-3p) led to decreased potency, independent of the position, size, or electronic properties of the substituents. Kinase selectivity assay revealed that 3a showed good selectivity over a panel of kinases, but was less selective over CDK1, CDK2 and CDK5. Additionally, the pharmacological properties of the synthesized compounds were investigated computationally by the SwissADME and the results showed that most of the compounds have good ADME profiles.
Asunto(s)
Diseño de Fármacos , Glucógeno Sintasa Quinasa 3 beta , Inhibidores de Proteínas Quinasas , Pirazoles , Urea , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Humanos , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Urea/farmacología , Urea/análogos & derivados , Urea/química , Urea/síntesis química , Relación Estructura-Actividad , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Estructura Molecular , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/metabolismo , Relación Dosis-Respuesta a DrogaRESUMEN
Isocyanates are critical components that affect the crosslinking density and structure of polyurethane (PU) foams. However, due to the cost and hazardous nature of the precursor for isocyanate synthesis, there is growing interest in reducing their usage in polyurethane foam production-especially in rigid PU foams (RPUF) where isocyanate is used in excess of the stoichiometric ratio. In this study, lignin-containing nanocellulose fibrils (LCNF) were explored as mechanical reinforcements for RPUF with the goal of maintaining the mechanical performance of the foam while using less isocyanate. Different amounts of LCNF (0-0.2 wt.%) were added to the RPUF made using isocyanate indices of 1.1, 1.05, 1.0, and 0.95. Results showed that LCNF served as a nucleating agent, significantly reducing cell size and thermal conductivity. LCNF addition increased the crosslinking density of RPUF, leading to enhanced compressive properties at an optimal loading of 0.1 wt.% compared to unreinforced foams at the same isocyanate index. Furthermore, at the optimal loading, LCNF-reinforced foams made at lower isocyanate indices showed comparable stiffness and strength to unreinforced foams made at higher isocyanate indices. These results highlight the reinforcing potential of LCNF in rigid polyurethane foams to improve insulation and mechanical performance with lower isocyanate usage.
RESUMEN
Objective: To investigate the associations between the geriatric nutritional risk index (GNRI) with cognitive functions among U.S. older adults. (Patients were classified into two nutrition risk groups based on the GNRI). Methods: Our analysis utilized data from the cross-sectional National Health and Nutrition Examination Survey (NHANES) conducted between 2011 and 2014. Cognitive function was measured using CERAD test, AFT and DSST. Composite z-scores were obtained by summing test-specific z-scores of the above three cognitive tests and were used to assess the global cognitive function. We employed weighted logistic regression models to evaluate the associations between GNRI and nutritional status (low and high GNRI) with cognitive function among older participants. The non-linear relationship was described using fitted smoothed curves and threshold effect analyses. Subgroup analysis and interaction tests were also conducted. Results: This study included 2,592 older participants aged 60 years and older. After adjusting for confounding variables, the GNRI was positively associated with AFT (ß = 0.05, 95% CI 0.005-0.096, p-value = 0.0285), DSST (ß = 0.192, 95% CI 0.078-0.305, p-value = 0.0010) and the composite z-scores (ß = 0.027, 95% CI 0.010-0.044, p-value = 0.0024). The results also showed that the high-GNRI group was significantly associated with AFT (ß = 0.922, 95% CI 0.166-1.677, p-value = 0.0169), DSST (ß = 2.791, 95% CI 0.884-4.698, p-value = 0.0042) and composite z-scores (ß = 0.405, 95% CI 0.115-0.695, p-value = 0.0062) likewise had significant positive correlations, using the low-GNRI group as a reference. In addition, inflection points with CERAD and composite z-scores were found at GNRI of 108.016, and 105.371, respectively. Specifically, on the left side of the inflection point GNRI levels were positively correlated with CERAD and composite z-scores (CERAD ß = 0.087, 95% CI 0.024-0.150, p-value = 0.0070; composite z-scores ß = 0.065, 95% CI 0.040-0.091, p-value <0.0001), while on the right side of the inflection point were significantly negatively associated (CERAD ß = -0.295, 95% CI -0.529 to -0.062, p-value = 0.0133, composite z-scores ß = -0.050, 95% CI -0.091 to -0.008, p-value = 0.0184). Conclusion: Lower GNRI was associated with poorer performance in several cognitive domains. Additionally, there was a non-linear positive association between GNRI and cognitive function in normal nutritional states, for excessive GNRI may cause cognitive decline.