Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Brain ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001866

RESUMEN

Mitochondrial and synaptic dysfunction are pathological features of brain aging and cognitive decline. Synaptic mitochondria are vital for meeting the high energy demands of synaptic transmission. However, little is known about the link between age-related metabolic changes and the integrity of synaptic mitochondria. To this end, we investigate the mechanisms of advanced glycation endproducts (AGEs)-mediated mitochondrial and synaptic stress and evaluate the strategies to eliminate these toxic metabolites. Using aged brain and novel transgenic mice overexpressing neuronal glyoxalase 1 (GLO1), we comprehensively analyzed alterations in accumulation/buildup of AGEs and related metabolites in synaptic mitochondria and the association of AGE levels with mitochondrial function. We demonstrate for the first time that synaptic mitochondria are an early and major target of AGEs and the related toxic metabolite methylglyoxal (MG), a precursor of AGEs. MG/AGEs-insulted synaptic mitochondria exhibit deterioration of mitochondrial and synaptic function. Such accumulation of MG/AGEs positively correlated with mitochondrial perturbation and oxidative stress in aging brain. Importantly, clearance of AGEs-related metabolites by enhancing neuronal GLO1, a key enzyme for detoxification/of AGEs, reduces synaptic mitochondrial AGEs accumulation and improves mitochondrial and cognitive function in aging and AGE-challenged mice. Furthermore, we evaluated the direct effect of AGEs on synaptic function in hippocampal neurons in live brain slices as an ex-vivo model and in vitro cultured hippocampal neurons by recording long-term potentiation (LTP) and measuring spontaneously occurring miniature excitatory postsynaptic currents (mEPSCs). Neuronal GLO1 rescues deficits in AGEs-induced synaptic plasticity and transmission by fully recovery of decline in LTP or frequency of mEPSC. These studies explore crosstalk between synaptic mitochondrial dysfunction and age-related metabolic changes relevant to brain aging and cognitive decline. Synaptic mitochondria are particularly susceptible to AGEs-induced damage, highlighting the central importance of synaptic mitochondrial dysfunction in synaptic degeneration in age-related cognitive decline. Thus, augmenting GLO1 function to scavenge toxic metabolites represents a therapeutic approach to reduce age-related AGEs accumulation and to improve mitochondrial function and learning and memory.

2.
Brain ; 147(5): 1710-1725, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38146639

RESUMEN

Mitochondrial dysfunction is an early pathological feature of Alzheimer disease and plays a crucial role in the development and progression of Alzheimer's disease. Strategies to rescue mitochondrial function and cognition remain to be explored. Cyclophilin D (CypD), the peptidylprolyl isomerase F (PPIase), is a key component in opening the mitochondrial membrane permeability transition pore, leading to mitochondrial dysfunction and cell death. Blocking membrane permeability transition pore opening by inhibiting CypD activity is a promising therapeutic approach for Alzheimer's disease. However, there is currently no effective CypD inhibitor for Alzheimer's disease, with previous candidates demonstrating high toxicity, poor ability to cross the blood-brain barrier, compromised biocompatibility and low selectivity. Here, we report a new class of non-toxic and biocompatible CypD inhibitor, ebselen, using a conventional PPIase assay to screen a library of ∼2000 FDA-approved drugs with crystallographic analysis of the CypD-ebselen crystal structure (PDB code: 8EJX). More importantly, we assessed the effects of genetic and pharmacological blockade of CypD on Alzheimer's disease mitochondrial and glycolytic bioenergetics in Alzheimer's disease-derived mitochondrial cybrid cells, an ex vivo human sporadic Alzheimer's disease mitochondrial model, and on synaptic function, inflammatory response and learning and memory in Alzheimer's disease mouse models. Inhibition of CypD by ebselen protects against sporadic Alzheimer's disease- and amyloid-ß-induced mitochondrial and glycolytic perturbation, synaptic and cognitive dysfunction, together with suppressing neuroinflammation in the brain of Alzheimer's disease mouse models, which is linked to CypD-related membrane permeability transition pore formation. Thus, CypD inhibitors have the potential to slow the progression of neurodegenerative diseases, including Alzheimer's disease, by boosting mitochondrial bioenergetics and improving synaptic and cognitive function.


Asunto(s)
Enfermedad de Alzheimer , Isoindoles , Mitocondrias , Compuestos de Organoselenio , Peptidil-Prolil Isomerasa F , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Peptidil-Prolil Isomerasa F/metabolismo , Animales , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratones , Humanos , Cognición/efectos de los fármacos , Azoles/farmacología , Azoles/uso terapéutico , Ciclofilinas/metabolismo , Ciclofilinas/antagonistas & inhibidores , Ratones Transgénicos , Ratones Endogámicos C57BL , Masculino , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico
3.
Aging Cell ; 20(5): e13368, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33951271

RESUMEN

Mitochondrial dysfunction is one of the early pathological features of Alzheimer's disease (AD). Accumulation of cerebral and mitochondrial Aß links to mitochondrial and synaptic toxicity. We have previously demonstrated the mechanism by which presequence peptidase (PITRM1)-mediated clearance of mitochondrial Aß contributes to mitochondrial and cerebral amyloid pathology and mitochondrial and synaptic stress in adult transgenic AD mice overexpressing Aß up to 12 months old. Here, we investigate the effect of PITRM1 in an advanced age AD mouse model (up to 19-24 months) to address the fundamental unexplored question of whether restoration/gain of PITRM1 function protects against mitochondrial and synaptic dysfunction associated with Aß accumulation and whether this protection is maintained even at later ages featuring profound amyloid pathology and synaptic failure. Using newly developed aged PITRM1/Aß-producing AD mice, we first uncovered reduction in PITRM1 expression in AD-affected cortex of AD mice at 19-24 months of age. Increasing neuronal PITRM1 activity/expression re-established mitochondrial respiration, suppressed reactive oxygen species, improved synaptic function, and reduced loss of synapses even at advanced ages (up to 19-24 months). Notably, loss of PITRM1 proteolytic activity resulted in Aß accumulation and failure to rescue mitochondrial and synaptic function, suggesting that PITRM1 activity is required for the degradation and clearance of mitochondrial Aß and Aß deposition. These data indicate that augmenting PITRM1 function results in persistent life-long protection against Aß toxicity in an AD mouse model. Therefore, augmenting PITRM1 function may enhance Aß clearance in mitochondria, thereby maintaining mitochondrial integrity and ultimately slowing the progression of AD.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Metaloendopeptidasas/metabolismo , Mitocondrias/enzimología , Neuronas/enzimología , Sinapsis/metabolismo , Envejecimiento , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Encéfalo/metabolismo , Cognición , Modelos Animales de Enfermedad , Femenino , Inflamación , Masculino , Metaloendopeptidasas/genética , Ratones Transgénicos , Mitocondrias/metabolismo , Neuronas/metabolismo , Sinapsis/fisiología
4.
Free Radic Biol Med ; 164: 429-438, 2021 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-33359687

RESUMEN

Aging is a strong risk factor for brain dementia and cognitive decline. Age-related accumulation of metabolites such as advanced glycation end products (AGEs) could serve as danger signals to initiate and accelerate disease process and neurodegeneration. The underlying causes and consequences of cerebral AGEs accumulation remain largely unknown. Here, we comprehensively investigate age-related accumulation of AGEs and dicarbonyls, including methylglyoxal (MG), glyoxal (GO), and 3-deoxyglucosone (3-DG), and the effects of mitochondrial reactive oxygen species (ROS) on cerebral AGEs accumulation, mitochondrial function, and oxidative stress in the aging human and mouse brain. We demonstrate that AGEs, including arginine and lysine derived N(6)-carboxymethyl lysine (CML), Nε-(1-Carboxyethyl)-l-lysine (CEL), and methylglyoxal-derived hydroimidazolone-1 (MG-H1), were significantly elevated in the cerebral cortex and hippocampus with advanced age in mice. Accordingly, aging mouse and human brains revealed decrease in activities of mitochondrial respiratory chain complexes I & IV and ATP levels, and increased ROS. Notably, administration of mitoTEMPO (2-(2,2,6,6-Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (mTEMPO), a scavenger of mitochondrial ROS, not only suppressed ROS production but also reduced aged-induced accumulation of AGEs and dicarbonyls. mTEMPO treatment improved mitochondrial respiratory function and restored ATP levels. Our findings provide evidence linking age-related accumulation of toxic metabolites (AGEs) to mitochondrial oxidative stress. This highlights a novel mechanism by which AGEs-dependent signaling promotes carbonyl stress and sustained mitochondrial dysfunction. Eliminating formation and accumulation of AGEs may represent a new therapeutic avenue for combating cognitive decline and mitochondrial degeneration relevant to aging and neurodegenerative diseases including Alzheimer's disease.


Asunto(s)
Productos Finales de Glicación Avanzada , Mitocondrias , Animales , Arginina , Ratones , Piruvaldehído , Especies Reactivas de Oxígeno
5.
J Alzheimers Dis ; 76(1): 165-178, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32444539

RESUMEN

BACKGROUND: Advanced glycation end products (AGEs) are an important risk factor for the development of cognitive decline in aging and late-onset neurodegenerative diseases including Alzheimer's disease. However, whether and how dietary AGEs exacerbate cognitive impairment and brain mitochondrial dysfunction in the aging process remains largely unknown. OBJECTIVE: We investigated the direct effects of dietary AGEs on AGE adducts accumulation, mitochondrial function, and cognitive performance in mice. METHODS: Mice were fed the AGE+ diet or AGE- diet. We examined levels of AGE adducts in serum and cerebral cortexes by immunodetection and immunohistochemistry, determined levels of reactive oxygen species by biochemical analysis, detected enzyme activity associated with mitochondrial respiratory chain complexes I & IV and ATP levels, and assessed learning and memory ability by Morris Water Maze and nesting behavior. RESULTS: Levels of AGE adducts (MG-H1 and CEL) were robustly increased in the serum and brain of AGE+ diet fed mice compared to the AGE- group. Furthermore, greatly elevated levels of reactive oxygen species, decreased activities of mitochondrial respiratory chain complexes I & IV, reduced ATP levels, and impaired learning and memory were evident in AGE+ diet fed mice compared to the AGE- group. CONCLUSION: These results indicate that dietary AGEs are important sources of AGE accumulation in vivo, resulting in mitochondrial dysfunction, impairment of energy metabolism, and subsequent cognitive impairment. Thus, reducing AGEs intake to lower accumulation of AGEs could hold therapeutic potential for the prevention and treatment of AGEs-induced mitochondrial dysfunction linked to cognitive decline.


Asunto(s)
Cognición/fisiología , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/metabolismo , Dieta/efectos adversos , Productos Finales de Glicación Avanzada/toxicidad , Mitocondrias/metabolismo , Animales , Cognición/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Femenino , Productos Finales de Glicación Avanzada/administración & dosificación , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
6.
Drug Discov Today ; 23(12): 1983-1989, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30081095

RESUMEN

The mitochondrial permeability transition pore (mPTP) has been considered a key contributor to cell death, inducing the process in several major neurodegenerative diseases. To date, the molecular nature of the mPTP remains confounding but its significance is universally acknowledged. Several targets have been screened and inhibition of mPTP has emerged as an attractive field for researchers. Nowadays, in silico-directed studies help to explore new small molecules targeting the mPTP to improve their drug-like properties and bioactivity. Here, we briefly summarize the role of mPTP in neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson disease (PD), and Huntington's disease (HD), and discusses current and future potential therapeutic targets.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Animales , Muerte Celular/efectos de los fármacos , Humanos , Poro de Transición de la Permeabilidad Mitocondrial
7.
Nat Commun ; 9(1): 2968, 2018 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-30061577

RESUMEN

Endophilin A1 (EP) is a protein enriched in synaptic terminals that has been linked to Alzheimer's disease (AD). Previous in vitro studies have shown that EP can bind to a variety of proteins, which elicit changes in synaptic transmission of neurotransmitters and spine formation. Additionally, we previously showed that EP protein levels are elevated in AD patients and AD transgenic animal models. Here, we establish the in vivo consequences of upregulation of EP expression in amyloid-ß peptide (Aß)-rich environments, leading to changes in both long-term potentiation and learning and memory of transgenic animals. Specifically, increasing EP augmented cerebral Aß accumulation. EP-mediated signal transduction via reactive oxygen species (ROS)/p38 mitogen-activated protein (MAP) kinase contributes to Aß-induced mitochondrial dysfunction, synaptic injury, and cognitive decline, which could be rescued by blocking either ROS or p38 MAP kinase activity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Enfermedad de Alzheimer/genética , Regulación de la Expresión Génica , Adenosina Trifosfato/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Animales Modificados Genéticamente , Antioxidantes/metabolismo , Cruzamientos Genéticos , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Humanos , Potenciación a Largo Plazo , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Neuronas/metabolismo , Neurotransmisores/metabolismo , Fragmentos de Péptidos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sinapsis/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
Methods Mol Biol ; 1779: 415-433, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29886547

RESUMEN

Mitochondrial and synaptic dysfunction is an early pathological feature of Alzheimer's disease (AD). Accumulation of amyloid beta-peptide (Aß) in mitochondria, particularly in synaptic mitochondria, potentiates and amplifies synaptic injury and disruption of synaptic transmission, leading to synaptic dysfunction and ultimately to synaptic failure. Thus, determination of the presence and levels of Aß in synaptic mitochondria associated with amyloid pathology is important for studying mitochondrial amyloid pathology. Here, we present a detailed methodology for the isolation of synaptic mitochondria from brain tissues and the determination of Aß levels in the isolated mitochondria as well as ultrastructural localization of synaptic mitochondrial Aß. These methods have been used successfully for the identification and characterization of Aß accumulation in synaptic mitochondria from mouse brains derived from transgenic AD mouse model. Additionally, we comprehensively discuss the sample preparation, experimental details, our unique procedures, optimization of parameters, and troubleshooting.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/aislamiento & purificación , Encéfalo/citología , Mitocondrias/metabolismo , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Centrifugación por Gradiente de Densidad , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Microscopía Electrónica , Mitocondrias/patología , Mitocondrias/ultraestructura , Sinapsis/metabolismo , Sinapsis/patología , Sinapsis/ultraestructura
9.
Hum Mol Genet ; 27(6): 1002-1014, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29329433

RESUMEN

Receptor for Advanced Glycation End products (RAGE) has been implicated in amyloid ß-peptide (Aß)-induced perturbation relevant to the pathogenesis of Alzheimer's disease (AD). However, whether and how RAGE regulates Aß metabolism remains largely unknown. Aß formation arises from aberrant cleavage of amyloid pre-cursor protein (APP) by ß- and γ-secretase. To investigate whether RAGE modulates ß- and γ-secretase activity potentiating Aß formation, we generated mAPP mice with genetic deletion of RAGE (mAPP/RO). These mice displayed reduced cerebral amyloid pathology, inhibited aberrant APP-Aß metabolism by reducing ß- and γ-secretases activity, and attenuated impairment of learning and memory compared with mAPP mice. Similarly, RAGE signal transduction deficient mAPP mice (mAPP/DN-RAGE) exhibited the reduction in Aß40 and Aß42 production and decreased ß-and γ-secretase activity compared with mAPP mice. Furthermore, RAGE-deficient mAPP brain revealed suppression of activation of p38 MAP kinase and glycogen synthase kinase 3ß (GSK3ß). Finally, RAGE siRNA-mediated gene silencing or DN-RAGE-mediated signaling deficiency in the enriched human APP neuronal cells demonstrated suppression of activation of GSK3ß, accompanied with reduction in Aß levels and decrease in ß- and γ-secretases activity. Our findings highlight that RAGE-dependent signaling pathway regulates ß- and γ-secretase cleavage of APP to generate Aß, at least in part through activation of GSK3ß and p38 MAP kinase. RAGE is a potential therapeutic target to limit aberrant APP-Aß metabolism in halting progression of AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Memoria/efectos de los fármacos , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
10.
Brain ; 140(12): 3233-3251, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29077793

RESUMEN

Mitochondrial dysfunction and synaptic damage are early pathological features of the Alzheimer's disease-affected brain. Memory impairment in Alzheimer's disease is a manifestation of brain pathologies such as accumulation of amyloid-ß peptide and mitochondrial damage. The underlying pathogenic mechanisms and effective disease-modifying therapies for Alzheimer's disease remain elusive. Here, we demonstrate for the first time that decreased PTEN-induced putative kinase 1 (PINK1) expression is associated with Alzheimer's disease pathology. Restoring neuronal PINK1 function strikingly reduces amyloid-ß levels, amyloid-associated pathology, oxidative stress, as well as mitochondrial and synaptic dysfunction. In contrast, PINK1-deficient mAPP mice augmented cerebral amyloid-ß accumulation, mitochondrial abnormalities, impairments in learning and memory, as well as synaptic plasticity at an earlier age than mAPP mice. Notably, gene therapy-mediated PINK1 overexpression promotes the clearance of damaged mitochondria by augmenting autophagy signalling via activation of autophagy receptors (OPTN and NDP52), thereby alleviating amyloid-ß-induced loss of synapses and cognitive decline in Alzheimer's disease mice. Loss of PINK1 activity or blockade of PINK1-mediated signalling (OPTN or NDP52) fails to reverse amyloid-ß-induced detrimental effects. Our findings highlight a novel mechanism by which PINK1-dependent signalling promotes the rescue of amyloid pathology and amyloid-ß-mediated mitochondrial and synaptic dysfunctions in a manner requiring activation of autophagy receptor OPTN or NDP52. Thus, activation of PINK1 may represent a new therapeutic avenue for combating Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Hipocampo/metabolismo , Mitocondrias/metabolismo , Proteínas Quinasas/metabolismo , Anciano , Anciano de 80 o más Años , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Autofagia , Encéfalo/metabolismo , Proteínas de Ciclo Celular , Proteínas del Ojo/metabolismo , Femenino , Terapia Genética , Humanos , Masculino , Proteínas de Transporte de Membrana , Ratones Transgénicos , Persona de Mediana Edad , Proteínas del Tejido Nervioso/metabolismo , Estrés Oxidativo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal
11.
Arterioscler Thromb Vasc Biol ; 37(8): 1536-1547, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28642238

RESUMEN

OBJECTIVE: Diabetic subjects are at higher risk of ischemic peripheral vascular disease. We tested the hypothesis that advanced glycation end products (AGEs) and their receptor (RAGE) block angiogenesis and blood flow recovery after hindlimb ischemia induced by femoral artery ligation through modulation of immune/inflammatory mechanisms. APPROACH AND RESULTS: Wild-type mice rendered diabetic with streptozotocin and subjected to unilateral femoral artery ligation displayed increased accumulation and expression of AGEs and RAGE in ischemic muscle. In diabetic wild-type mice, femoral artery ligation attenuated angiogenesis and impaired blood flow recovery, in parallel with reduced macrophage content in ischemic muscle and suppression of early inflammatory gene expression, including Ccl2 (chemokine [C-C motif] ligand-2) and Egr1 (early growth response gene-1) versus nondiabetic mice. Deletion of Ager (gene encoding RAGE) or transgenic expression of Glo1 (reduces AGEs) restored adaptive inflammation, angiogenesis, and blood flow recovery in diabetic mice. In diabetes mellitus, deletion of Ager increased circulating Ly6Chi monocytes and augmented macrophage infiltration into ischemic muscle tissue after femoral artery ligation. In vitro, macrophages grown in high glucose display inflammation that is skewed to expression of tissue damage versus tissue repair gene expression. Further, macrophages grown in high versus low glucose demonstrate blunted macrophage-endothelial cell interactions. In both settings, these adverse effects of high glucose were reversed by Ager deletion in macrophages. CONCLUSIONS: These findings indicate that RAGE attenuates adaptive inflammation in hindlimb ischemia; underscore microenvironment-specific functions for RAGE in inflammation in tissue repair versus damage; and illustrate that AGE/RAGE antagonism may fill a critical gap in diabetic peripheral vascular disease.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Angiopatías Diabéticas/metabolismo , Eliminación de Gen , Inflamación/metabolismo , Isquemia/metabolismo , Músculo Esquelético/irrigación sanguínea , Neovascularización Fisiológica , Enfermedad Arterial Periférica/metabolismo , Receptor para Productos Finales de Glicación Avanzada/deficiencia , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Animales , Antígenos Ly/metabolismo , Velocidad del Flujo Sanguíneo , Glucemia/metabolismo , Comunicación Celular , Células Cultivadas , Microambiente Celular , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatología , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/fisiopatología , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Productos Finales de Glicación Avanzada/metabolismo , Inflamación/genética , Inflamación/fisiopatología , Isquemia/genética , Isquemia/fisiopatología , Macrófagos/metabolismo , Ratones Noqueados , Ratones Transgénicos , Monocitos/metabolismo , Músculo Esquelético/metabolismo , Enfermedad Arterial Periférica/genética , Enfermedad Arterial Periférica/fisiopatología , Fenotipo , Receptor para Productos Finales de Glicación Avanzada/genética , Recuperación de la Función , Flujo Sanguíneo Regional , Transducción de Señal , Estreptozocina , Factores de Tiempo
12.
J Alzheimers Dis ; 59(1): 223-239, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28598851

RESUMEN

Loss of synapse and synaptic dysfunction contribute importantly to cognitive impairment in Alzheimer's disease (AD). Mitochondrial dysfunction and oxidative stress are early pathological features in AD-affected brain. However, the effect of AD mitochondria on synaptogenesis remains to be determined. Using human trans-mitochondrial "cybrid" (cytoplasmic hybrid) neuronal cells whose mitochondria were transferred from platelets of patients with sporadic AD or age-matched non-AD subjects with relatively normal cognition, we provide the first evidence of mitochondrial dysfunction compromises synaptic development and formation of synapse in AD cybrid cells in response to chemical-induced neuronal differentiation. Compared to non-AD control cybrids, AD cybrid cells showed synaptic loss which was evidenced by a significant reduction in expression of two synaptic marker proteins: synaptophysin (presynaptic marker) and postsynaptic density protein-95, and neuronal proteins (MAP-2 and NeuN) upon neuronal differentiation. In parallel, AD-mediated synaptic deficits correlate to mitochondrial dysfunction and oxidative stress as well as activation of p38 MAP kinase. Notably, inhibition of p38 MAP kinase by pharmacological specific p38 inhibitor significantly increased synaptic density, improved mitochondrial function, and reduced oxidative stress. These results suggest that activation of p38 MAP kinase signaling pathway contributes to AD-mediated impairment in neurogenesis, possibly by inhibiting the neuronal differentiation. Our results provide new insight into the crosstalk of dysfunctional AD mitochondria to synaptic formation and maturation via activation of p38 MAP kinase. Therefore, blockade of p38 MAP kinase signal transduction could be a potential therapeutic strategy for AD by alleviating loss of synapses.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/patología , Mitocondrias/patología , Enfermedades Mitocondriales/etiología , Transducción de Señal/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Adenosina Trifosfato/metabolismo , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Diferenciación Celular , Homólogo 4 de la Proteína Discs Large , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Humanos , Células Híbridas , Masculino , Potencial de la Membrana Mitocondrial , Mitocondrias/ultraestructura , Enfermedades Mitocondriales/patología , Neuroblastoma/patología , Neuroblastoma/ultraestructura , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Rodaminas/metabolismo , Sinapsis/metabolismo , Sinapsis/patología , Sinaptofisina/metabolismo
13.
Diabetes ; 63(6): 1948-65, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24520121

RESUMEN

In mammals, changes in the metabolic state, including obesity, fasting, cold challenge, and high-fat diets (HFDs), activate complex immune responses. In many strains of rodents, HFDs induce a rapid systemic inflammatory response and lead to obesity. Little is known about the molecular signals required for HFD-induced phenotypes. We studied the function of the receptor for advanced glycation end products (RAGE) in the development of phenotypes associated with high-fat feeding in mice. RAGE is highly expressed on immune cells, including macrophages. We found that high-fat feeding induced expression of RAGE ligand HMGB1 and carboxymethyllysine-advanced glycation end product epitopes in liver and adipose tissue. Genetic deficiency of RAGE prevented the effects of HFD on energy expenditure, weight gain, adipose tissue inflammation, and insulin resistance. RAGE deficiency had no effect on genetic forms of obesity caused by impaired melanocortin signaling. Hematopoietic deficiency of RAGE or treatment with soluble RAGE partially protected against peripheral HFD-induced inflammation and weight gain. These findings demonstrate that high-fat feeding induces peripheral inflammation and weight gain in a RAGE-dependent manner, providing a foothold in the pathways that regulate diet-induced obesity and offering the potential for therapeutic intervention.


Asunto(s)
Tejido Adiposo/metabolismo , Dieta Alta en Grasa , Inflamación/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Obesidad/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Técnica de Clampeo de la Glucosa , Inflamación/genética , Resistencia a la Insulina/genética , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor para Productos Finales de Glicación Avanzada , Aumento de Peso/genética
14.
Diabetes ; 63(2): 761-74, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24186862

RESUMEN

Sustained increases in glucose flux via the aldose reductase (AR) pathway have been linked to diabetic vascular complications. Previous studies revealed that glucose flux via AR mediates endothelial dysfunction and leads to lesional hemorrhage in diabetic human AR (hAR) expressing mice in an apoE(-/-) background. Our studies revealed sustained activation of Egr-1 with subsequent induction of its downstream target genes tissue factor (TF) and vascular cell adhesion molecule-1 (VCAM-1) in diabetic apoE(-/-)hAR mice aortas and in high glucose-treated primary murine aortic endothelial cells expressing hAR. Furthermore, we observed that flux via AR impaired NAD(+) homeostasis and reduced activity of NAD(+)-dependent deacetylase Sirt-1 leading to acetylation and prolonged expression of Egr-1 in hyperglycemic conditions. In conclusion, our data demonstrate a novel mechanism by which glucose flux via AR triggers activation, acetylation, and prolonged expression of Egr-1 leading to proinflammatory and prothrombotic responses in diabetic atherosclerosis.


Asunto(s)
Aldehído Reductasa/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Regulación de la Expresión Génica/fisiología , Hiperglucemia/metabolismo , Aldehído Reductasa/genética , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Células Endoteliales/fisiología , Glucosa/farmacología , Humanos , Ratones , Ratones Transgénicos , NAD/metabolismo , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo
15.
Arterioscler Thromb Vasc Biol ; 33(8): 1779-87, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23766264

RESUMEN

OBJECTIVE: Subjects with diabetes mellitus are at high risk for developing atherosclerosis through a variety of mechanisms. Because the metabolism of glucose results in production of activators of protein kinase C (PKC)ß, it was logical to investigate the role of PKCß in modulation of atherosclerosis in diabetes mellitus. APPROACH AND RESULTS: ApoE(-/-) and PKCß(-/-)/ApoE(-/-) mice were rendered diabetic with streptozotocin. Quantification of atherosclerosis, gene expression profiling, or analysis of signaling molecules was performed on aortic sinus or aortas from diabetic mice. Diabetes mellitus-accelerated atherosclerosis increased the level of phosphorylated extracellular signal-regulated kinase 1/2 and Jun-N-terminus kinase mitogen-activated protein kinases and augmented vascular expression of inflammatory mediators, as well as increased monocyte/macrophage infiltration and CD11c(+) cells accumulation in diabetic ApoE(-/-) mice, processes that were diminished in diabetic PKCß(-/-)/ApoE(-/-) mice. In addition, pharmacological inhibition of PKCß reduced atherosclerotic lesion size in diabetic ApoE(-/-) mice. In vitro, the inhibitors of PKCß and extracellular signal-regulated kinase 1/2, as well as small interfering RNA to Egr-1, significantly decreased high-glucose-induced expression of CD11c (integrin, alpha X 9 complement component 3 receptor 4 subunit]), chemokine (C-C motif) ligand 2, and interleukin-1ß in U937 macrophages. CONCLUSIONS: These data link enhanced activation of PKCß to accelerated diabetic atherosclerosis via a mechanism that includes modulation of gene transcription and signal transduction in the vascular wall, processes that contribute to acceleration of vascular inflammation and atherosclerosis in diabetes mellitus. Our results uncover a novel role for PKCß in modulating CD11c expression and inflammatory response of macrophages in the development of diabetic atherosclerosis. These findings support PKCß activation as a potential therapeutic target for prevention and treatment of diabetic atherosclerosis.


Asunto(s)
Apolipoproteínas E/inmunología , Aterosclerosis/inmunología , Diabetes Mellitus Experimental/inmunología , Proteína Quinasa C/inmunología , Vasculitis/inmunología , Animales , Aortitis/inmunología , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/metabolismo , Antígeno CD11c/metabolismo , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/inmunología , Angiopatías Diabéticas/metabolismo , Modelos Animales de Enfermedad , Expresión Génica/inmunología , Humanos , Hiperglucemia/genética , Hiperglucemia/inmunología , Hiperglucemia/metabolismo , Hiperlipidemias/genética , Hiperlipidemias/inmunología , Hiperlipidemias/metabolismo , Macrófagos/inmunología , Ratones , Ratones Noqueados , Monocitos/inmunología , Proteína Quinasa C/genética , Proteína Quinasa C beta , Transducción de Señal/inmunología , Células U937 , Vasculitis/genética , Vasculitis/metabolismo
16.
Diabetes ; 62(3): 931-43, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23172920

RESUMEN

Peripheral neuropathy and insensate limbs and digits cause significant morbidity in diabetic individuals. Previous studies showed that deletion of the receptor for advanced end-glycation products (RAGE) in mice was protective in long-term diabetic neuropathy. Here, we tested the hypothesis that RAGE suppresses effective axonal regeneration in superimposed acute peripheral nerve injury attributable to tissue-damaging inflammatory responses. We report that deletion of RAGE, particularly in diabetic mice, resulted in significantly higher myelinated fiber densities and conduction velocities consequent to acute sciatic nerve crush compared with wild-type control animals. Consistent with key roles for RAGE-dependent inflammation, reconstitution of diabetic wild-type mice with RAGE-null versus wild-type bone marrow resulted in significantly improved axonal regeneration and restoration of function. Diabetic RAGE-null mice displayed higher numbers of invading macrophages in the nerve segments postcrush compared with wild-type animals, and these macrophages in diabetic RAGE-null mice displayed greater M2 polarization. In vitro, treatment of wild-type bone marrow-derived macrophages with advanced glycation end products (AGEs), which accumulate in diabetic nerve tissue, increased M1 and decreased M2 gene expression in a RAGE-dependent manner. Blockade of RAGE may be beneficial in the acute complications of diabetic neuropathy, at least in part, via upregulation of regeneration signals.


Asunto(s)
Diabetes Mellitus Tipo 1/complicaciones , Neuropatías Diabéticas/metabolismo , Regeneración Nerviosa , Receptores Inmunológicos/metabolismo , Nervio Ciático/fisiopatología , Neuropatía Ciática/metabolismo , Animales , Trasplante de Médula Ósea , Células Cultivadas , Neuropatías Diabéticas/inmunología , Neuropatías Diabéticas/patología , Neuropatías Diabéticas/prevención & control , Productos Finales de Glicación Avanzada/metabolismo , Inmunohistoquímica , Ligandos , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Macrófagos/trasplante , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Compresión Nerviosa/efectos adversos , Conducción Nerviosa , Especificidad de Órganos , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/genética , Nervio Ciático/inmunología , Nervio Ciático/lesiones , Nervio Ciático/patología , Neuropatía Ciática/inmunología , Neuropatía Ciática/patología , Neuropatía Ciática/prevención & control
17.
Vascul Pharmacol ; 57(5-6): 160-7, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22750165

RESUMEN

The multi-ligand receptor RAGE was discovered on account of its ability to bind and transduce the cell stress-provoking signals of advanced glycation endproducts (AGEs). The finding that RAGE also bound pro-inflammatory molecules set the stage for linking RAGE and inflammation to the pathogenesis of diabetic macro- and microvascular complications. In this review, we focus on the roles of RAGE and its ligands in diabetes complications. We recount the findings from mice, rats, swine and human subjects suggesting that RAGE action potently contributes to vascular, inflammatory and end-organ stress and damage in types 1 and 2 diabetes. We detail the efforts to track ligands and RAGE in human subjects with diabetes to address if this axis may be a biomarker reflective of the state of the diabetic complications. Lastly, we suggest specific strategies to tackle AGE-ligand-RAGE interactions as potential therapeutic targets for diabetes and its complications.


Asunto(s)
Diabetes Mellitus Tipo 1/fisiopatología , Diabetes Mellitus Tipo 2/fisiopatología , Productos Finales de Glicación Avanzada/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Complicaciones de la Diabetes/fisiopatología , Complicaciones de la Diabetes/terapia , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/terapia , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/terapia , Humanos , Inflamación/fisiopatología , Ratones , Ratas , Receptor para Productos Finales de Glicación Avanzada , Transducción de Señal , Porcinos
18.
Circ Res ; 110(10): 1279-93, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22511750

RESUMEN

RATIONALE: The mammalian diaphanous-related formin (mDia1), governs microtubule and microfilament dynamics while functioning as an effector for Rho small GTP-binding proteins during key cellular processes such as adhesion, cytokinesis, cell polarity, and morphogenesis. The cytoplasmic domain of the receptor for advanced glycation endproducts binds to the formin homology 1 domain of mDia1; mDia1 is required for receptor for advanced glycation endproducts ligand-induced cellular migration in transformed cells. OBJECTIVE: Because a key mechanism in vascular remodeling is the induction of smooth muscle cell migration, we tested the role of mDia1 in this process. METHODS AND RESULTS: We report that endothelial denudation injury to the murine femoral artery significantly upregulates mDia1 mRNA transcripts and protein in the injured vessel, particularly in vascular smooth muscle cells within the expanding neointima. Loss of mDia1 expression significantly reduces pathological neointimal expansion consequent to injury. In primary murine aortic smooth muscle cells, mDia1 is required for receptor for advanced glycation endproducts ligand-induced membrane translocation of c-Src, which leads to Rac1 activation, redox phosphorylation of AKT/glycogen synthase kinase 3ß, and consequent smooth muscle cell migration. CONCLUSIONS: We conclude that mDia1 integrates oxidative and signal transduction pathways triggered, at least in part, by receptor for advanced glycation endproducts ligands, thereby regulating pathological neointimal expansion.


Asunto(s)
Proteínas Portadoras/metabolismo , Músculo Liso Vascular/metabolismo , Neointima/patología , Estrés Oxidativo/fisiología , Transducción de Señal/fisiología , Citoesqueleto de Actina/fisiología , Animales , Proteínas Portadoras/genética , Movimiento Celular/fisiología , Células Cultivadas , Arteria Femoral/lesiones , Arteria Femoral/metabolismo , Arteria Femoral/patología , Forminas , Productos Finales de Glicación Avanzada/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Microtúbulos/fisiología , Músculo Liso Vascular/lesiones , Músculo Liso Vascular/patología , NADH NADPH Oxidorreductasas/genética , NADH NADPH Oxidorreductasas/metabolismo , NADPH Oxidasa 1 , Neointima/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/genética , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/metabolismo
19.
Amino Acids ; 42(4): 1151-61, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20957395

RESUMEN

The formation of advanced glycation endproducts (AGEs) occurs in diverse settings such as diabetes, aging, renal failure, inflammation and hypoxia. The chief cellular receptor for AGEs, RAGE, transduces the effects of AGEs via signal transduction, at least in part via processes requiring the RAGE cytoplasmic domain binding partner, diaphanous-1 or mDia1. Data suggest that RAGE perpetuates the inflammatory signals initiated by AGEs via multiple mechanisms. AGE-RAGE interaction stimulates generation of reactive oxygen species and inflammation--mechanisms which enhance AGE formation. Further, recent data in type 1 diabetic kidney reveal that deletion of RAGE prevents methylglyoxal accumulation, at least in part via RAGE-dependent regulation of glyoxalase-1, a major enzyme involved in methylglyoxal detoxification. Taken together, these considerations place RAGE in the center of biochemical and molecular stresses that characterize the complications of diabetes and chronic disease. Stopping RAGE-dependent signaling may hold the key to interrupting cycles of cellular perturbation and tissue damage in these disorders.


Asunto(s)
Productos Finales de Glicación Avanzada/metabolismo , Receptores Inmunológicos/metabolismo , Animales , Enfermedad/etiología , Glicosilación , Humanos , Receptor para Productos Finales de Glicación Avanzada , Transducción de Señal
20.
FASEB J ; 26(2): 882-93, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22075646

RESUMEN

In extensive liver resection secondary to primary or metastatic liver tumors, or in living donor liver transplantation, strategies to quell deleterious inflammatory responses and facilitate regeneration are essential. The receptor for advanced glycation endproducts (RAGE) and myeloid differentiating factor 88 (Myd88) are implicated in the inflammatory response. To establish the contributions of RAGE vs. Myd88 signaling in extensive liver resection, we probed the effect of RAGE and/or Myd88, the latter primarily a key transducer of major toll-like receptors and also implicated in interleukin-1 (Il1) signaling, in a murine model of extensive (85%) hepatectomy. We report that, although Myd88 is thoroughly essential for survival via regulation of NF-κB and TNF-α, deletion of RAGE significantly improved survival compared to wild-type, Myd88-null, or RAGE-null/Myd88-null mice. RAGE opposes Myd88 signaling at multiple levels: by suppression of p65 levels, thereby reducing activation of NF-κB and consequent production of cyclin D1, and by suppression of Il6-mediated phosphorylation of Stat3, thereby down-regulating Pim1 and suppressing the hyperplastic response. Further, RAGE-dependent suppression of glyoxalase1, a detoxification pathway for pre-AGEs, enhances AGE levels and suppresses Il6 action. We conclude that blockade of RAGE may rescue liver remnants from the multiple signals that preclude adaptive proliferation triggered primarily by Myd88 signaling pathways.


Asunto(s)
Regeneración Hepática/fisiología , Factor 88 de Diferenciación Mieloide/fisiología , Receptores Inmunológicos/fisiología , Animales , Apoptosis/fisiología , Proliferación Celular , Productos Finales de Glicación Avanzada/metabolismo , Hepatectomía , Hepatocitos/citología , Hepatocitos/metabolismo , Inmunidad Innata , Regeneración Hepática/genética , Regeneración Hepática/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/deficiencia , Factor 88 de Diferenciación Mieloide/genética , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-pim-1/genética , Proteínas Proto-Oncogénicas c-pim-1/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/deficiencia , Receptores Inmunológicos/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA