RESUMEN
Piezoelectric biomaterials hold a pivotal role in the progression of bioelectronics and biomedicine, owing to their remarkable electromechanical properties, biocompatibility, and bioresorbability. However, their technological potential is restrained by certain challenges, including precise manipulation of nanobiomolecules, controlling their growth across nano-to-macro hierarchy, and tuning desirable mechanical properties. We report a high-speed thermal-electric driven aerosol (TEA) printing method capable of fabricating piezoelectric biofilms in a singular step. Electrohydrodynamic aerosolizing and in situ electrical poling allow instantaneous tuning of the spatial organization of biomolecular inks. We demonstrate TEA printing of ß-glycine/polyvinylpyrrolidone films, and such films exhibit the piezoelectric voltage coefficient of 190 × 10-3 volt-meters per newton, surpassing that of industry-standard lead zirconate titanate by approximately 10-fold. Furthermore, these films demonstrate nearly two orders of magnitude improvement in mechanical flexibility compared to glycine crystals. We also demonstrate the ultrasonic energy harvesters based on the biofilms, providing the possibility of wirelessly powering bioelectronics.
Asunto(s)
Aerosoles , Aerosoles/química , Tecnología Inalámbrica , Biopelículas/crecimiento & desarrollo , Electricidad , Materiales Biocompatibles/química , Plomo/química , Impresión , Glicina/químicaRESUMEN
The modeling of the concrete matrix serves as a foundation for mesoscale analysis of concrete, which provides a crucial avenue for investigating the crack propagation and strength characteristics of concrete. However, the primary prerequisite for conducting such analyses is the generation of aggregate models. By combining the advantages of Voronoi diagrams and the random walk algorithm (RWA), a Voronoi-random walk algorithm is proposed in this paper. The algorithm overcomes the limitations of traditional methods, including constraints on aggregate volume fraction, low computational efficiency, and insufficient randomness in aggregate distribution. The meso-structure of a concrete block was modeled by the proposed method, and then its failure behavior under uniaxial compression was simulated using the finite element method. The numerical results agreed well with the experimental observations, indicating the effectiveness and accuracy of the proposed approach.
RESUMEN
Food, water, and energy comprise a complex system (FWE nexus) that generates much carbon emissions during operation. At the same time, urban blue-green infrastructure (BGI) has a critical carbon sequestration function. This paper combines the functions of the FWE nexus and BGI and uses ecological network analysis (ENA) and the Markov model to measure the carbon metabolism (CM) mechanisms and evolutionary characteristics of BGI and FWE nexus (BGI-FWE nexus) complex systems. The results show that Guangzhou has high carbon emissions, and Zhaoqing and Huizhou have high carbon sequestration. Resident land and industrial and transportation land transfers to different land uses are more likely to produce positive carbon flows, while BGI transfers to other types are more likely to produce negative carbon flows. The study of CM mechanisms reveals a high proportion of competition relationships and a low proportion of mutualism relationships. The ecological utility index (EUI) tends to fall initially and then increase, peaking at 0.84 in 2015-2020, the highest value for the study period. The CM network has less system robustness (SR) and is in an unsustainable state of high redundancy and low efficiency. The mechanism evolution characterization study's findings show a decreased likelihood of remaining original and less stability in the spatial transfer probability matrices of EUI and SR. In this study, we constructed a BGI-FWE nexus research framework based on the different CM functions of BGI and FWE nexus. The research framework contributes to the realization of carbon reduction in the FWE nexus system and is essential for the planning and management of urban BGI.
RESUMEN
Implantable medical devices (IMDs), like pacemakers regulating heart rhythm or deep brain stimulators treating neurological disorders, revolutionize healthcare. However, limited battery life necessitates frequent surgeries for replacements. Ultrasound power transfer (UPT) emerges as a promising solution for sustainable IMD operation. Current research prioritizes implantable materials, with less emphasis on sound field analysis and maximizing energy transfer during wireless power delivery. This review addresses this gap. A comprehensive analysis of UPT technology, examining cutting-edge system designs, particularly in power supply and efficiency is provided. The review critically examines existing efficiency models, summarizing the key parameters influencing energy transmission in UPT systems. For the first time, an energy flow diagram of a general UPT system is proposed to offer insights into the overall functioning. Additionally, the review explores the development stages of UPT technology, showcasing representative designs and applications. The remaining challenges, future directions, and exciting opportunities associated with UPT are discussed. By highlighting the importance of sustainable IMDs with advanced functions like biosensing and closed-loop drug delivery, as well as UPT's potential, this review aims to inspire further research and advancements in this promising field.
RESUMEN
The intriguing biomineralization process in nature endows the mineralized biological materials with intricate microarchitected structures in a facile and orderly way, which provides an inspiration for processing ceramics. Here, we propose a simple and efficient manufacturing process to fabricate cellular ceramics in programmed cell-based 3D configurations, inspired by the biomineralization process of the diatom frustule. Our approach separates the ingredient synthesis from architecture building, enabling the programmable manufacturing of cellular ceramics with various cell sizes, geometries, densities, metastructures, and constituent elements. Our approach exploits surface tension to capture precursor solutions in the architected cellular lattices, allowing us to control the liquid geometry and manufacture cellular ceramics with high precision. We investigate the geometry parameters for the architected lattices assembled by unit cells and unit columns, both theoretically and experimentally, to guide the 3D fluid interface creation in arranged configurations. We manufacture a series of globally cellular and locally compact piezoceramics, obtaining an enhanced piezoelectric constant and a designed piezoelectric anisotropy. This bioinspired, surface tension-assisted approach has the potential to revolutionize the design and processing of multifarious ceramic materials for structural and functional applications in energy, electronics and biomedicine.
RESUMEN
In unsupervised learning, clustering is a common starting point for data processing. The convex or concave fusion clustering method is a novel approach that is more stable and accurate than traditional methods such as k-means and hierarchical clustering. However, the optimization algorithm used with this method can be slowed down significantly by the complexity of the fusion penalty, which increases the computational burden. This paper introduces a random projection ADMM algorithm based on the Bernoulli distribution and develops a double random projection ADMM method for high-dimensional fusion clustering. These new approaches significantly outperform the classical ADMM algorithm due to their ability to significantly increase computational speed by reducing complexity and improving clustering accuracy by using multiple random projections under a new evaluation criterion. We also demonstrate the convergence of our new algorithm and test its performance on both simulated and real data examples.
RESUMEN
Intraductal papillary mucinous neoplasm of the bile tract is a rare biliary tumor characterized by mucin growth within the bile duct. In the early stages, it often presents without significant obstruction, this often leads to its discovery in the advanced stages. We report a case of a 63-year-old female with an intraductal papillary mucinous neoplasm of the bile duct (IPMN-B). The patient had a history of intrahepatic bile duct stones and biliary ascariasis. She gradually developed symptoms such as jaundice and intermittent fever before admission, and a bile duct biopsy confirmed the diagnosis of IPMN-B. Currently, endoscopic photodynamic therapy (PDT) is considered an effective treatment for bile duct cancer. In this case, we performed two sessions of PDT guided by SpyGlass. The patient experienced complete remission postoperatively, and there has been no evidence of tumor recurrence or metastasis in the three years following the procedure.
Asunto(s)
Neoplasias de los Conductos Biliares , Fotoquimioterapia , Fármacos Fotosensibilizantes , Humanos , Femenino , Persona de Mediana Edad , Fotoquimioterapia/métodos , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Fármacos Fotosensibilizantes/uso terapéutico , Adenocarcinoma Mucinoso/tratamiento farmacológico , Ácido Aminolevulínico/uso terapéuticoRESUMEN
BACKGROUND: Cholangiocarcinoma (CCA) is a malignant tumor with a poor prognosis. The specific mechanism of photodynamic therapy (PDT) in treating CCA remains unclear. This study aims to investigate the mechanisms of PDT in the treatment of CCA and try to improve the therapeutic effect of PDT by intervening associated signaling pathways. METHODS: The Cell Counting Kit-8 (CCK-8) was used to examine the cytotoxicity of CCA cell lines following PDT. Apoptosis and reactive oxygen species (ROS) levels were measured by flow cytometry. A transmission electron microscope was used to study the changes in cell mitochondria after PDT. The levels of glutathione (GSH), malondialdehyde (MDA), ferrous iron (Fe2+), lactate dehydrogenase (LDH), and lipid peroxide (LPO) were determined. Changes in the expression of apoptosis and ferroptosis-related proteins were determined using quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. Xenograft tumor models were developed to investigate the effects of PDT on tumor proliferation, apoptosis, and ferroptosis in vivo. RESULTS: PDT inhibited tumor proliferation and induced apoptosis both in vivo and in vitro. This treatment led to swelling and damage of the mitochondria in affected cells. Furthermore, ROS levels rose, accompanied by an increase in the proportion of apoptotic-positive cells. The expressions of Bax and Caspase-3 were upregulated, while the Bcl-2 was downregulated. Meanwhile, PDT triggered ferroptosis, marked by decreased expressions of GPX4 and SLC7A11, and reduced GSH levels. This was accompanied by upregulation of P53 expression and heightened levels of Fe2+, LPO, MDA, and LDH. After inducing the ferroptosis pathway, the therapeutic effect of PDT was enhanced, the tumor tissue was further reduced, and the degree of malignancy was reduced. CONCLUSION: PDT promotes apoptosis and ferroptosis of cholangiocarcinoma cells by activating the P53/SLC7A11/GPX4 signaling pathway and inhibits the growth of cholangiocarcinoma. Inducing ferroptosis can enhance the effectiveness of photodynamic therapy.
Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Apoptosis , Neoplasias de los Conductos Biliares , Colangiocarcinoma , Ferroptosis , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Fotoquimioterapia , Fármacos Fotosensibilizantes , Transducción de Señal , Proteína p53 Supresora de Tumor , Colangiocarcinoma/tratamiento farmacológico , Fotoquimioterapia/métodos , Ferroptosis/efectos de los fármacos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Apoptosis/efectos de los fármacos , Humanos , Línea Celular Tumoral , Animales , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Ratones , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Neoplasias de los Conductos Biliares/tratamiento farmacológico , Sistema de Transporte de Aminoácidos y+/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular/efectos de los fármacos , Porfirinas/farmacología , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUND: Lupus nephritis (LN) is a complication of SLE characterised by immune dysfunction and oxidative stress (OS). Limited options exist for LN. We aimed to identify LN-related OS, highlighting the need for non-invasive diagnostic and therapeutic approaches. METHODS: LN-differentially expressed genes (DEGs) were extracted from Gene Expression Omnibus datasets (GSE32591, GSE112943 and GSE104948) and Molecular Signatures Database for OS-associated DEGs (OSEGs). Functional enrichment analysis was performed for OSEGs related to LN. Weighted gene co-expression network analysis identified hub genes related to OS-LN. These hub OSEGs were refined as biomarker candidates via least absolute shrinkage and selection operator. The predictive value was validated using receiver operating characteristic (ROC) curves and nomogram for LN prognosis. We evaluated LN immune cell infiltration using single-sample gene set enrichment analysis and CIBERSORT. Additionally, gene set enrichment analysis explored the functional enrichment of hub OSEGs in LN. RESULTS: The study identified four hub genes, namely STAT1, PRODH, TXN2 and SETX, associated with OS related to LN. These genes were validated for their diagnostic potential, and their involvement in LN pathogenesis was elucidated through ROC and nomogram. Additionally, alterations in immune cell composition in LN correlated with hub OSEG expression were observed. Immunohistochemical analysis reveals that the hub gene is most correlated with activated B cells and CD8 T cells. Finally, we uncovered that the enriched pathways of OSEGs were mainly involved in the PI3K-Akt pathway and the Janus kinase-signal transducer and activator of transcription pathway. CONCLUSION: These findings contribute to advancing our understanding of the complex interplay between OS, immune dysregulation and molecular pathways in LN, laying a foundation for the identification of potential diagnostic biomarkers and therapeutic targets.
Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , Humanos , Nefritis Lúpica/diagnóstico , Nefritis Lúpica/genética , Fosfatidilinositol 3-Quinasas , Estrés Oxidativo/genética , Aprendizaje Automático , ADN Helicasas , ARN Helicasas , Enzimas MultifuncionalesRESUMEN
The transcription and replication processes of non-segmented, negative-strand RNA viruses (nsNSVs) are catalyzed by a multi-functional polymerase complex composed of the large protein (L) and a cofactor protein, such as phosphoprotein (P). Previous studies have shown that the nsNSV polymerase can adopt a dimeric form, however, the structure of the dimer and its function are poorly understood. Here we determine a 2.7 Å cryo-EM structure of human parainfluenza virus type 3 (hPIV3) L-P complex with the connector domain (CD') of a second L built, while reconstruction of the rest of the second L-P obtains a low-resolution map of the ring-like L core region. This study reveals detailed atomic features of nsNSV polymerase active site and distinct conformation of hPIV3 L with a unique ß-strand latch. Furthermore, we report the structural basis of L-L dimerization, with CD' located at the putative template entry of the adjoining L. Disruption of the L-L interface causes a defect in RNA replication that can be overcome by complementation, demonstrating that L dimerization is necessary for hPIV3 genome replication. These findings provide further insight into how nsNSV polymerases perform their functions, and suggest a new avenue for rational drug design.
Asunto(s)
Nucleotidiltransferasas , Virus ARN , Humanos , Dimerización , Dominio Catalítico , Replicación ViralAsunto(s)
Cordoma , Neoplasias Hepáticas , Sacro , Neoplasias de la Columna Vertebral , Humanos , Cordoma/patología , Cordoma/secundario , Cordoma/diagnóstico por imagen , Sacro/patología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/secundario , Neoplasias de la Columna Vertebral/secundario , Neoplasias de la Columna Vertebral/patología , Masculino , Femenino , Persona de Mediana EdadAsunto(s)
Carcinoma Hepatocelular , Progresión de la Enfermedad , Neoplasias Hepáticas , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/cirugía , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Transducción de Señal/genéticaRESUMEN
Correction for 'Exploring the Mpemba effect: a universal ice pressing enables porous ceramics' by Xiaodan Yang et al., Mater. Horiz., 2024, DOI: https://doi.org/10.1039/d3mh01869e.
RESUMEN
Background: The investigation of mitophagy in Alzheimer's disease (AD) remains relatively underexplored in bibliometric analysis. Objective: To delve into the progress of mitophagy, offering a comprehensive overview of research trends and frontiers for researchers. Methods: Basic bibliometric information, targets, and target-drug-clinical trial-disease extracted from publications identified in the Web of Science Core Collection from 2007 to 2022 were assessed using bibliometric software. Results: The study encompassed 5,146 publications, displaying a consistent 16-year upward trajectory. The United States emerged as the foremost contributor in publications, with the Journal of Alzheimer's Disease being the most prolific journal. P. Hemachandra Reddy, George Perry, and Xiongwei Zhu are the top 3 most prolific authors. PINK1 and Parkin exhibited an upward trend in the last 6 years. Keywords (e.g., insulin, aging, epilepsy, tauopathy, and mitochondrial quality control) have recently emerged as focal points of interest within the past 3 years. "Mitochondrial dysfunction" is among the top terms in disease clustering. The top 10 drugs/molecules (e.g., curcumin, insulin, and melatonin) were summarized, accompanied by their clinical trials and related targets. Conclusions: This study presents a comprehensive overview of the mitophagy research landscape in AD over the past 16 years, underscoring mitophagy as an emerging molecular mechanism and a crucial focal point for potential drug in AD. This study pioneers the inclusion of targets and their correlations with drugs, clinical trials, and diseases in bibliometric analysis, providing valuable insights and inspiration for scholars and readers of JADR interested in understanding the potential mechanisms and clinical trials in AD.
RESUMEN
Piezoceramics with global porosity and local compaction are highly desired to exploit the combination of mechanical and electrical properties. However, achieving such a functional combination is challenging because of the lack of techniques for applying uniform pressure inside porous ceramic green parts. Nature provides many examples of generating strong forces inside the macro and micro channels via the state transformation of water. Inspired by these phenomena, we present a technique of "ice and fire", that is, water freezing (ice pressing) and high-temperature sintering (fire), to produce ideal porous piezoceramics. We introduce a new compaction method called the "ice pressing method", which manipulates liquid phase transition for compaction. This method has several advantages, including uniform pressure distribution, a wide pressure range, high effectiveness, and selective freezing. It can generate an ultrahigh pressure of up to 180 MPa on the piezoceramic green skeletons in minutes while retaining their functional pore structures. By exploiting the Mpemba phenomenon, we further accelerate the compaction procedure by 11%. The first ice-pressed and second fire-consolidated lead zirconate titanate (PZT) ceramics are highly densified and exhibit an outstanding piezoelectric response (d33 = 531 pC N-1), comparable to conventional pressed bulk counterparts and 10-20 times higher than those of unpressed materials. The novel ice pressing method breaks the limitation of lacking a compaction technique for porous ceramics. The versatile and effective ice pressing method is a green and low-cost route promoting applications in sensors, acoustics, water filtration, catalyst substrates, and energy harvesting.
RESUMEN
Spatial and temporal distributions and influencing factors of extreme precipitation are important bases for coping with future climate change. The spatiotemporal variability and affecting factors of extreme precipitation indices (EPIs) in east of northwest China (ENW) during 1961-2015 were investigated using a series of approaches such as modified Mann-Kendall trend test, Hurst exponent, ensemble empirical mode decomposition (EEMD), and geodetector model. The results showed that CDD and CWD decreased significantly (P < 0.01), with rates of 1.4 days/decade and 0.07 days/decade, respectively. EPIs in ENW exhibited an obvious heterogeneity. CDD gradually increased from the southeast to the northwest. The remaining EPIs generally showed the opposite trend. Geodetector results demonstrated that large-scale circulation factors had a significant impact on EPIs in ENW. The influence of large-scale climate factors on EPIs was concentrated in nonlinear enhancement, and Nino3.4 and SO were the dominant driving factors that played a major role in the variability of EPIs. The results of this study provided a reference for ENW and other arid and semi-arid regions to cope with extreme climates and develop corresponding strategies.
Asunto(s)
Cambio Climático , Clima Desértico , China , TemperaturaRESUMEN
Inconsistent interface control in devices based on two-dimensional materials (2DMs) has limited technological maturation. Astounding variability of 2D/three-dimensional (2D/3D) interface properties has been reported, which has been exacerbated by the lack of direct investigations of buried interfaces commonly found in devices. Herein, we demonstrate a new process that enables the assembly and isolation of device-relevant heterostructures for buried interface characterization. This is achieved by implementing a water-soluble substrate (GeO2), which enables deposition of many materials onto the 2DM and subsequent heterostructure release by dissolving the GeO2 substrate. Here, we utilize this novel approach to compare how the chemistry, doping, and strain in monolayer MoS2 heterostructures fabricated by direct deposition vary from those fabricated by transfer techniques to show how interface properties differ with the heterostructure fabrication method. Direct deposition of thick Ni and Ti films is found to react with the monolayer MoS2. These interface reactions convert 50% of MoS2 into intermetallic species, which greatly exceeds the 10% conversion reported previously and 0% observed in transfer-fabricated heterostructures. We also measure notable differences in MoS2 carrier concentration depending on the heterostructure fabrication method. Direct deposition of thick Au, Ni, and Al2O3 films onto MoS2 increases the hole concentration by >1012 cm-2 compared to heterostructures fabricated by transferring MoS2 onto these materials. Thus, we demonstrate a universal method to fabricate 2D/3D heterostructures and expose buried interfaces for direct characterization.
RESUMEN
BACKGROUND: Lumbar revision surgery can be performed by simple lumbar nerve decompression or lumbar interbody fusion, including percutaneous endoscopic lumbar discectomy, transforaminal lumbar interbody fusion (TLIF), etc. However, lumbar revision surgery is very difficult in surgical operation. We sought to explore the technique safety and efficacy of microscope-assisted minimally invasive transforaminal lumbar interbody fusion (MI-TLIF) in lumbar revision surgery. METHODS: Cases of postoperative recurrence following lumbar spine surgery (n = 63) treated from December 2016 to July 2021 were retrospectively analyzed, including 24 cases of microscope-assisted MI-TLIF (microscopic group) and 39 cases of naked-eye MI-TLIF (naked-eye group). The operation time, intraoperative blood loss, incision length, postoperative drainage, length of hospital stay, initial operation, and visual analog score (VAS) of low back and leg pain before and at 7 days and 3 months after the operation and the last follow-up were compared between the two groups. The Oswestry Dysfunction Index (ODI) and the Japanese Orthopaedic Association (JOA) scores before and after the operation and the Bridwell interbody fusion grades at 1 year were compared. The independent t tests, Mann-Whitney U tests, and Chi-square tests were used for analysis. RESULTS: All 63 patients were successfully treated by operation and were followed up for an average of 31.5 ± 8.6 months (range 12-48 months). The two groups had no significant difference in sex, age, incision length, initial operation, or operative segment (P > 0.05). There was no significance in operation time, VAS score, ODI score, and JOA score of low back pain or Bridwell interbody fusion grade between the two groups (P > 0.05). Significant differences in intraoperative blood loss, postoperative drainage, and the lengths of hospital stay were observed between the two groups (P < 0.05). Cerebrospinal fluid leakage (n = 2), edema of nerve roots (n = 2), and incision infection (n = 1) were observed in the naked-eye group. There were no complications in the microscopic group, such as cerebrospinal fluid leakage, edema of nerve roots, and incision infection. CONCLUSION: Although microscope-assisted MI-TLIF and naked-eye MI-TLIF are both effective during lumbar revision surgery, microscope-assisted MI-TLIF brings less trauma, less bleeding, shorter postoperative hospital stay, and faster recovery. Unlike traditional surgery, microscope-assisted MI-TLIF provides a clear visual field, adequate hemostasis, and nerve decompression.
Asunto(s)
Discectomía Percutánea , Desplazamiento del Disco Intervertebral , Fusión Vertebral , Humanos , Resultado del Tratamiento , Reoperación , Vértebras Lumbares/cirugía , Estudios Retrospectivos , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Fusión Vertebral/métodos , Desplazamiento del Disco Intervertebral/cirugía , Infección de la Herida Quirúrgica/cirugía , Pérdida de Sangre Quirúrgica , Pérdida de Líquido Cefalorraquídeo/cirugía , EdemaRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Baiheqingjin Decoction (BHQJ), which consists of 7 traditional Chinese herbs including Baibu (Stemona tuberosa Lour.), Hezi (Terminalia chebula Retz.), Mahuang (Ephedra sinica Stapf.), Ziwan (Aster tataricus L. f.), Dilong (Pheretima), Sangbaipi (Morus alba L.), and Xianhecao (Agrimonia pilosa Ledeb.). BHQJ is commonly used for treating cough asthma, and variant cough-variant asthma as it, is effective in improving asthma symptoms and reducing airway inflammation. AIM OF THE STUDY: To investigate the mechanisms of BHQJ in treating allergic asthma. MATERIALS AND METHODS: We collected information about the components and targets of 6 Chinese medicines (excluding Pheretima) from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Additionally, we obtained genes associated with asthma from six disease databases. To create a protein-protein interaction network, we conducted an intersection analysis using differentially expressed genes derived from RNA transcriptome data. Subsequently, we carried out Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. To validate the findings from network pharmacology and transcriptomics, we established an allergic asthma mouse model induced by ovalbumin and conducted in vivo experiments. RESULTS: Using network pharmacology and transcriptomics analyses, we identified the pathways including the PI3K/AKT signaling pathway, and NF-κB signaling pathway. Among these, the involvement of the PI3K/AKT/NF-κB signaling pathway in various pathological processes of asthma, such as airway inflammation, smooth muscle contraction, and excessive mucus production, are well-documented. Histopathological examinations indicated that BHQJ had the potential to mitigate inflammatory cell infiltration and the excessive growth of goblet cells in the airways of asthmatic mice, consequently reducing mucus secretion. Results from Western blot demonstrated that BHQJ could inhibit the activation of the PI3K/AKT/NF-κB pathway at the protein levels. Enzyme-linked immunosorbent assay findings revealed that BHQJ could reduce the production of typical "type 2 asthma" cytokines and immunoglobulin (Ig) E in the blood. These discoveries imply that BHQJ has the potential to reduce the release of inflammatory cytokines and suppress the overactivation of the PI3K/AKT/NF-κB signaling pathway, thus offering a therapeutic approach for asthma. CONCLUSION: Our research offers initial insights into the fundamental mechanisms through which BHQJ treats asthma. This study reveals the potential mechanism of BHQJ in treating asthma, particularly its role in reducing inflammatory cytokines, mucus production, and cell infiltration, as well as inhibiting the expression of PI3K/AKT/P65 phosphorylated protein. These findings indicate the potential of BHQJ in treating asthma. In summary, our study provides preliminary insights into the asthma treatment mechanism of BHQJ and provides guidance for future research.
Asunto(s)
Asma , Medicamentos Herbarios Chinos , Ratones , Animales , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Líquido del Lavado Bronquioalveolar , Asma/patología , Transducción de Señal , Inflamación/tratamiento farmacológico , Citocinas/metabolismo , Inmunoglobulina E , Medicamentos Herbarios Chinos/efectos adversosRESUMEN
Multi-shelled hollow metal-organic frameworks (MH-MOFs) are highly promising as electrode materials due to their impressive surface area and efficient mass transfer capabilities. However, the fabrication of MH-MOFs has remained a formidable challenge. In this study, two types of double-shelled open hollow Prussian blue analogues, one with divalent iron (DHPBA-Fe(II)) and the other with trivalent iron (DHPBA-Fe(III)), through an innovative inner-outer growth strategy are successfully developed. The growth mechanism is found to involve lattice matching growth and ligand exchange processes. Subsequently, DHPBA-Fe(II) and DHPBA-Fe(III) are employed as cathodes in aqueous Zn-ion batteries. Significantly, DHPBA-Fe(II) demonstrated exceptional performance, exhibiting a capacity of 92.5 mAh g-1 at 1 A g-1, and maintaining remarkable stability over an astounding 10 000 cycles. This research is poised to catalyze further exploration into the fabrication techniques of MH-MOFs and offer fresh insights into the intricate interplay between electronic structure and battery performance.