Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 58(66): 9214-9217, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35894937

RESUMEN

Aryl ketones are one of the most important classes of organic compounds, and widely present in various pharmacological compounds, biologically active molecules and functional materials. Presented herein is a facile synthetic method for the construction of ketones via Ni-catalyzed cross coupling of epoxides with aryltriflates. A range of easily accessible epoxides can be highly regioselectively converted to the corresponding aryl ketones with good yields in a redox neutral fashion.


Asunto(s)
Cetonas , Níquel , Catálisis , Compuestos Epoxi
2.
Biotechnol Biofuels ; 14(1): 118, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33971954

RESUMEN

BACKGROUND: Xylan is the most abundant hemicellulose polysaccharide in nature, which can be converted into high value-added products. However, its recalcitrance to breakdown requires the synergistic action of multiple enzymes. Aspergillus niger, possessing numerous xylan degrading isozyme-encoding genes, are highly effective xylan degraders in xylan-rich habitats. Therefore, it is necessary to explore gene transcription, the mode of action and cooperation mechanism of different xylanase isozymes to further understand the efficient xylan-degradation by A. niger. RESULTS: Aspergillus niger An76 encoded a comprehensive set of xylan-degrading enzymes, including five endo-xylanases (one GH10 and four GH11). Quantitative transcriptional analysis showed that three xylanase genes (xynA, xynB and xynC) were up-regulated by xylan substrates, and the order and amount of enzyme secretion differed. Specifically, GH11 xylanases XynA and XynB were initially secreted successively, followed by GH10 xylanase XynC. Biochemical analyses displayed that three GH11 xylanases (XynA, XynB and XynD) showed differences in catalytic performance and product profiles, possibly because of intricate hydrogen bonding between substrates and functional residues in the active site architectures impacted their binding capacity. Among these, XynB had the best performance in the degradation of xylan and XynE had no catalytic activity. Furthermore, XynA and XynB showed synergistic effects during xylan degradation. CONCLUSIONS: The sequential secretion and different action modes of GH11 xylanases were essential for the efficient xylan degradation by A. niger An76. The elucidation of the degradation mechanisms of these xylanase isozymes further improved our understanding of GH-encoding genes amplification in filamentous fungi and may guide the design of the optimal enzyme cocktails in industrial applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA