Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Angew Chem Int Ed Engl ; : e202409619, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137131

RESUMEN

Hole-transporting materials (HTMs) are essential for optoelectronic devices, such as organic light-emitting diodes (OLEDs), dye-sensitized solar cells, and perovskite solar cells. Triarylamines have been employed as HTMs since they were introduced in 1987. However, heteroatoms or side chains embedded in the core skeleton of triarylamines can cause thermal and chemical stability problems. Herein, we report that hexabenzo[a,c,fg,j,l,op]tetracene (HBT), a small nonplanar nanographene, functions as a hydrocarbon HTM with hole transport properties that match those of triarylamine-based HTMs. X-ray structural analysis and theoretical calculations revealed effective multidirectional orbital interactions and transfer integrals for HBT. In-depth experimental and theoretical analyses revealed that the nonplanarity-inducing annulative π-extension can achieve not only a stable amorphous state in bulk films, but also a higher increase in the highest occupied molecular orbital level than conventional linear or cyclic π-extension. Furthermore, an in-house manufactured HBT-based OLED exhibited excellent performance, featuring superior curves for current density-voltage, external quantum efficiency-luminance, and lifetime compared to those of representative triarylamine-based OLEDs. A notable improvement in device lifetime was observed for the HBT-based OLED, highlighting the advantages of the hydrocarbon HTM. This study demonstrates the immense potential of small nonplanar nanographenes for optoelectronic device applications.

2.
J Am Chem Soc ; 146(32): 22642-22649, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39092507

RESUMEN

Sulfur-bridged cationic diazulenomethenes were synthesized and exhibited high stability even under basic conditions due to the delocalization of positive charge over the whole π-conjugated skeleton. As a result of the effective delocalization and the absence of orthogonally oriented bulky substituents, the cationic π-conjugated skeletons formed a π-stacked array with short interfacial distances. A derivative with SbF6- as a counter anion formed a charge-segregated assembly in the crystalline state, rather than the generally favored charge-by-charge arrangement of oppositely charged species based on electrostatic interactions. Theoretical calculations suggested that the destabilization caused by electrostatic repulsion between two positively charged π-conjugated skeletons is compensated by the dispersion forces. In addition, the counter anion SbF6- played a role in regulating the molecular alignment through F⋯H-C and F-S interactions, which resulted in the charge-segregated alignment of the cationic π-skeletons. This characteristic assembled structure gave rise to a high charge-carrier mobility of 1.7 cm2 V-1 s-1 as determined using flash-photolysis time-resolved microwave conductivity.

3.
Angew Chem Int Ed Engl ; : e202404890, 2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38923134

RESUMEN

The development of small organic molecules that can convert light energy into chemical energy to directly promote molecular transformation is of fundamental importance in chemical science. Herein, we report a zwitterionic acridinium amidate as a catalyst for the direct functionalization of aliphatic C-H bonds. This organic zwitterion absorbs visible light to generate the corresponding amidyl radical in the form of excited-state triplet diradical with prominent reactivity for hydrogen atom transfer to facilitate C-H alkylation with a high turnover number. The experimental and theoretical investigations revealed that the noncovalent interactions between the anionic amidate nitrogen and a pertinent hydrogen-bond donor, such as hexafluoroisopropanol, are crucial for ensuring the efficient generation of catalytically active species, thereby fully eliciting the distinct reactivity of the acridinium amidate as a photoinduced direct hydrogen atom transfer catalyst.

4.
J Chem Phys ; 160(19)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38752530

RESUMEN

Chemical phenomena involving near-degenerate electronic states, such as conical intersections or avoided crossing, can be properly described using quasi-degenerate perturbation theory. This study proposed a highly scalable quasi-degenerate second-order N-electron valence state perturbation theory (QD-NEVPT2) using the local pair-natural orbital (PNO) method. Our recent study showed an efficient implementation of the PNO-based state-specific NEVPT2 method using orthonormal localized virtual molecular orbitals (LVMOs) as an intermediate local basis. This study derived the state-coupling (or off-diagonal) terms to implement QD-NEVPT2 in an alternative manner to enhance efficiency based on the internally contracted basis and PNO overlap matrices between different references. To facilitate further acceleration, a local resolution-of-the-identity (RI) three-index integral generation algorithm was developed using LMOs and LVMOs. Although the NEVPT2 theory is considered to be less susceptible to the intruder-state problem (ISP), this study revealed that it can easily suffer from ISP when calculating high-lying excited states. We ameliorated this instability using the imaginary level shift technique. The PNO-QD-NEVPT2 calculations were performed on small organic molecules for the 30 lowest-lying states, as well as photoisomerization involving the conical intersection of 1,1-dimethyldibenzo[b,f] silepin with a cis-stilbene skeleton. These calculations revealed that the PNO-QD-NEVPT2 method yielded negligible errors compared to the canonical QD-NEVPT2 results. Furthermore, we tested its applicability to a large photoisomerization system using the green fluorescent protein model and the ten-state calculation of the large transition metal complex, showcasing that off-diagonal elements can be evaluated at a relatively low cost.

5.
J Phys Chem Lett ; 15(21): 5788-5794, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38780133

RESUMEN

Channelrhodopsin (ChR) and heliorhodopsin (HeR) are microbial rhodopsins with similar structures but different circular dichroism (CD) spectra: ChR shows biphasic negative and positive bands, whereas HeR shows a single positive band. We explored the physicochemical factors underlying these differences through computational methods. Using the exciton model based on first-principles computations, we obtained the CD spectra of ChR and HeR. The obtained spectra indicate that the protein dimer structures and the quantum mechanical treatment of the retinal chromophore and its interacting amino acids are crucial for accurately reproducing the experimental spectra. Further calculations revealed that the sign of the excitonic coupling was opposite between the ChR and HeR dimers, which was attributed to the contrasting second term of the orientation factor between the two retinal chromophores. These findings demonstrate that slight variations in the intermolecular orientation of the two chromophores can result in significant differences in the CD spectral shape.


Asunto(s)
Dicroismo Circular , Channelrhodopsins/química , Multimerización de Proteína , Teoría Cuántica , Modelos Moleculares
6.
Angew Chem Int Ed Engl ; 63(22): e202403829, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38556467

RESUMEN

Embedding two boron atoms into a polycyclic aromatic hydrocarbon (PAH) leads to the formation of a neutral analogue that is isoelectronic to the corresponding dicationic PAH skeleton, which can significantly alter its electronic structure. Based on this concept, we explore herein the identification of near-infrared (NIR)-emissive PAHs with the aid of an in silico screening method. Using perylene as the PAH scaffold, we embedded two boron atoms and fused two thiophene rings to it. Based on this design concept, all possible structures (ca. 2500 entities) were generated using a comprehensive structure generator. Time-dependent DFT calculations were conducted on all these structures, and promising candidates were extracted based on the vertical excitation energy, transition dipole moment, and atomization energy per bond. One of the extracted dithieno-diboraperylene candidates was synthesized and indeed exhibited emission at 724 nm with a quantum yield of 0.40 in toluene, demonstrating the validity of this screening method. This modification was further applied to other PAHs, and a series of thienobora-modified PAHs was synthesized.

7.
Sci Adv ; 10(5): eadk3219, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38295171

RESUMEN

Thermally activated delayed fluorescence (TADF) materials and multi-resonant (MR) variants are promising organic emitters that can achieve an internal electroluminescence quantum efficiency of ~100%. The reverse intersystem crossing (RISC) is key for harnessing triplet energies for fluorescence. Theoretical modeling is thus crucial to estimate its rate constant (kRISC) for material development. Here, we present a comprehensive assessment of the theory for simulating the RISC of MR-TADF molecules within a perturbative excited-state dynamics framework. Our extended rate formula reveals the importance of the concerted effects of nonadiabatic spin-vibronic coupling and vibrationally induced spin-orbital couplings in reliably determining kRISC of MR-TADF molecules. The excited singlet-triplet energy gap is another factor influencing kRISC. We present a scheme for gap estimation using experimental Arrhenius plots of kRISC. Erroneous behavior caused by approximations in Marcus theory is elucidated by testing 121 MR-TADF molecules. Our extended modeling offers in-depth descriptions of kRISC.

8.
J Am Chem Soc ; 146(6): 3984-3991, 2024 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-38236721

RESUMEN

The light-harvesting antennae of diatoms and spinach are composed of similar chromophores; however, they exhibit different absorption wavelengths. Recent advances in cryoelectron microscopy have revealed that the diatom light-harvesting antenna fucoxanthin chlorophyll a/c-binding protein (FCPII) forms a tetramer and differs from the spinach antenna in terms of the number of protomers; however, the detailed molecular mechanism remains elusive. Herein, we report the physicochemical factors contributing to the characteristic light absorption of the diatom light-harvesting antenna based on spectral calculations using an exciton model. Spectral analysis reveals the significant contribution of unique fucoxanthin molecules (fucoxanthin-S) in FCPII to the diatom-specific spectrum, and further analysis determines their essential role in excitation-energy transfer to chlorophyll. It was revealed that the specificity of these fucoxanthin-S molecules is caused by the proximity between protomers associated with the tetramerization of FCPII. The findings of this study demonstrate that diatoms employ fucoxanthin-S to harvest energy under the ocean in the absence of long-wavelength sunlight and can provide significant information about the survival strategies of photosynthetic organisms to adjust to their living environment.


Asunto(s)
Carotenoides , Diatomeas , Xantófilas , Carotenoides/química , Clorofila A , Diatomeas/química , Microscopía por Crioelectrón , Subunidades de Proteína/metabolismo , Clorofila/química , Complejos de Proteína Captadores de Luz/química , Transferencia de Energía , Proteínas de Unión a Clorofila/química , Proteínas de Unión a Clorofila/metabolismo
9.
ACS Phys Chem Au ; 3(6): 540-552, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38034034

RESUMEN

Incorporation of the phosphorus element into a π-conjugated skeleton offers valuable prospects for adjusting the electronic structure of the resulting functional π-electron systems. Trivalent phosphorus has the potential to decrease the LUMO level through σ*-π* interaction, which is further enhanced by its oxygenation to the pentavalent P center. This study shows that utilizing our computational analysis to examine excited-state dynamics based on radiative/nonradiative rate constants and fluorescence quantum yield (ΦF) is effective for analyzing the photophysical properties of P-containing organic dyes. We theoretically investigate how the trivalent phosphanyl group and pentavalent phosphine oxide moieties affect radiative and nonradiative decay processes. We evaluate four variations of P-bridged stilbene analogs. Our analysis reveals that the primary decay pathway for photoexcited bis-phosphanyl-bridged stilbene is the intersystem crossing (ISC) to the triplet state and nonradiative. The oxidation of the phosphine moiety, however, suppresses the ISC due to the relative destabilization of the triplet states. The calculated rate constants match an increase in experimental ΦF from 0.07 to 0.98, as simulated from 0.23 to 0.94. The reduced HOMO-LUMO gap supports a red shift in the fluorescence spectra relative to the phosphine analog. The thiophene-fused variant with the nonoxidized trivalent P center exhibits intense emission with a high ΦF, 0.95. Our prediction indicates that the ISC transfer is obstructed owing to the relatively destabilized triplet state induced by the thiophene substitution. Conversely, the thiophene-fused analog with the phosphine oxide moieties triggers a high-rate internal conversion mediated by conical intersection, leading to a decreased ΦF.

10.
Phys Chem Chem Phys ; 25(30): 20597-20605, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37477571

RESUMEN

Nafamostat and camostat are known to inhibit the spike protein-mediated fusion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by forming a covalent bond with the human transmembrane serine protease 2 (TMPRSS2) enzyme. Previous experiments revealed that the TMPRSS2 inhibitory activity of nafamostat surpasses that of camostat, despite their structural similarities; however, the molecular mechanism of TMPRSS2 inhibition remains elusive. Herein, we report the energy profiles of the acylation reactions of nafamostat, camostat, and a nafamostat derivative by quantum chemical calculations using a combined molecular cluster and polarizable continuum model (PCM) approach. We further discuss the physicochemical relevance of their inhibitory activity in terms of thermodynamics and kinetics. Our analysis attributes the strong inhibitory activity of nafamostat to the formation of a stable acyl intermediate and its low activation energy during acylation with TMPRSS2. The proposed approach is also promising for elucidating the molecular mechanisms of other covalent drugs.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Guanidinas/farmacología , Serina Endopeptidasas
11.
J Chem Phys ; 158(15)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37094010

RESUMEN

Second-order N-electron valence state perturbation theory (NEVPT2) is an exactly size-consistent and intruder-state-free multi-reference theory. To accelerate the NEVPT2 computation, Guo and Neese combined it with the local pair-natural orbital (PNO) method using the projected atomic orbitals (PAOs) as the underlying local basis [Guo et al., J. Chem. Phys. 144, 094111 (2016)]. In this paper, we report the further development of the PNO-NEVPT2 method using the orthonormal and non-redundant localized virtual molecular orbitals (LVMOs) instead of PAOs. The LVMOs were previously considered to perform relatively poor compared to PAOs because the resulting orbital domains were unacceptably large. Our prior work, however, showed that this drawback can be remedied by re-forming the domain construction scheme using differential overlap integrals [Saitow et al., J. Chem. Phys. 157, 084101 (2022)]. In this work, we develop further refinements to enhance the feasibility of using LVMOs. We first developed a two-level semi-local approach for screening out so-called weak-pairs to select or truncate the pairs for PNO constructions more flexibly. As a refinement specific to the Pipek-Mezey localization for LVMOs, we introduced an iterative scheme to truncate the Givens rotations using varying thresholds. We assessed the LVMO-based PNO-NEVPT2 method through benchmark calculations for linear phenyl alkanes, which demonstrate that it performs comparably well relative to the PAO-based approach. In addition, we evaluated the Co-C bond dissociation energies for the cobalamin derivatives composed of 200 or more atoms, which confirms that the LVMO-based method can recover more than 99.85% of the canonical NEVPT2 correlation energy.

13.
J Chem Phys ; 158(5): 054107, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36754810

RESUMEN

We present an algorithm for evaluating analytic nuclear energy gradients of the state-averaged density matrix renormalization group complete-active-space self-consistent field (SA-DMRG-CASSCF) theory based on the newly derived coupled-perturbed (CP) DMRG-CASSCF equations. The Lagrangian for the conventional SA-CASSCF analytic gradient theory is extended to the SA-DMRG-CASSCF variant that can fully consider a whole set of constraints on the parameters of multi-root canonical matrix product states formed at all the DMRG block configurations. An efficient algorithm to solve the CP-DMRG-CASSCF equations for determining the multipliers was developed. The complexity of the resultant analytic gradient algorithm is overall the same as that of the unperturbed SA-DMRG-CASSCF algorithm. In addition, a reduced-scaling approach was developed to directly compute the SA reduced density matrices (SA-RDMs) and their perturbed ones without calculating separate state-specific RDMs. As part of our implementation scheme, we neglect the term associated with the constraint on the active orbitals in terms of the active-active rotation in the Lagrangian. Thus, errors from the true analytic gradients may be caused in this scheme. The proposed gradient algorithm was tested with the spin-adapted implementation by checking how accurately the computed analytic energy gradients reproduce numerical gradients of the SA-DMRG-CASSCF energies using a common number of renormalized bases. The illustrative applications show that the errors are sufficiently small when using a typical number of the renormalized bases, which is required to attain adequate accuracy in DMRG's total energies.

14.
J Phys Chem Lett ; 14(7): 1784-1793, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36762971

RESUMEN

The visual pigments of the cones perceive red, green, and blue colors. The monkey green (MG) pigment possesses a unique Cl- binding site; however, its relationship to the spectral tuning in green pigments remains elusive. Recently, FTIR spectroscopy revealed the characteristic structural modifications of the retinal binding site by Cl- binding. Herein, we report the computational structural modeling of MG pigments and quantum-chemical simulation to investigate its spectral redshift and physicochemical relevance when Cl- is present. Our protein structures reflect the previously suggested structural changes. AlphaFold2 failed to predict these structural changes. Excited-state calculations successfully reproduced the experimental red-shifted absorption energies, corroborating our protein structures. Electrostatic energy decomposition revealed that the redshift results from the His197 protonation state and conformations of Glu129, Ser202, and Ala308; however, Cl- itself contributes to the blueshift. Site-directed mutagenesis supported our analysis. These modeled structures may provide a valuable foundation for studying cone pigments.


Asunto(s)
Cloruros , Pigmentos Retinianos , Pigmentos Retinianos/química , Pigmentos Retinianos/metabolismo , Cloruros/química , Retina , Espectroscopía Infrarroja por Transformada de Fourier
15.
ACS Chem Biol ; 18(2): 347-355, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36638821

RESUMEN

Stomata are pores in the leaf epidermis of plants and their opening and closing regulate gas exchange and water transpiration. Stomatal movements play key roles in both plant growth and stress responses. In recent years, small molecules regulating stomatal movements have been used as a powerful tool in mechanistic studies, as well as key players for agricultural applications. Therefore, the development of new molecules regulating stomatal movement and the elucidation of their mechanisms have attracted much attention. We herein describe the discovery of 2,6-dihalopurines, AUs, as a new stomatal opening inhibitor, and their mechanistic study. Based on biological assays, AUs may involve in the pathway related with plasma membrane H+-ATPase phosphorylation. In addition, we identified leucine-rich repeat extensin proteins (LRXs), LRX3, LRX4 and LRX5 as well as RALF, as target protein candidates of AUs by affinity based pull down assay and molecular dynamics simulation. The mechanism of stomatal movement related with the LRXs-RALF is an unexplored pathway, and therefore further studies may lead to the discovery of new signaling pathways and regulatory factors in the stomatal movement.


Asunto(s)
Proteínas de Arabidopsis , Estomas de Plantas , Fosforilación , Membrana Celular/metabolismo , Pared Celular/metabolismo , ATPasas de Translocación de Protón , Proteínas de Arabidopsis/metabolismo
16.
Angew Chem Int Ed Engl ; 62(11): e202219107, 2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36645619

RESUMEN

Catalytic systems using a small amount of organic photosensitizer for the activation of an inorganic (on-demand ligand-free) nickel(II) salt represent a cost-effective method for cross-coupling reactions, while C(sp2 )-O bond formation remains less developed. Herein, we report a strategy for the synthesis of phenols with a nickel(II) salt and an organic photosensitizer, which was identified via an investigation into the catalytic activity of 60 organic photosensitizers consisting of various electron donor and acceptor moieties. To examine the effect of multiple intractable parameters on the catalytic activity of photosensitizers, machine-learning (ML) models were developed, wherein we embedded descriptors representing their physical and structural properties, which were obtained from DFT calculations and RDKit, respectively. The study clarified that integrating both DFT- and RDKit-derived descriptors in ML models balances higher "precision" and "recall" across a wide range of search space relative to using only one of the two descriptor sets.

17.
J Am Chem Soc ; 144(49): 22479-22492, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36459436

RESUMEN

We report the thermodynamic and kinetic aqueous self-assembly of a series of amide-functionalized dithienyldiketopyrrolopyrroles (TDPPs) that bear various hydrophilic oligoethylene glycol (OEG) and hydrophobic alkyl chains. Spectroscopic and microscopic studies showed that the TDPP-based amphiphiles with an octyl group form sheet-like aggregates with J-type exciton coupling. The effect of the alkyl chains on the aggregated structure and the internal molecular orientation was examined via computational studies combining MD simulations and TD-DFT calculations. Furthermore, solvent and thermal denaturation experiments provided a state diagram that indicates the formation of unexpected nanoparticles during the self-assembly into nanosheets when longer OEG side chains are introduced. A kinetic analysis revealed that the nanoparticles were obtained selectively as an on-pathway intermediate state toward the formation of thermodynamically controlled nanosheets. The metastable aggregates were used for seed-initiated supramolecular assembly, which allowed establishing control over the assembly kinetics and the aggregate size. The sheet-like aggregates prepared using the seeding method exhibited coherent vibration in the excited state, indicating a well-ordered orientation of the TDPP units. These results underline the significance of fine tuning of the hydrophobic/hydrophilic balance in the molecular design to kinetically control the assembly of amphiphilic π-conjugated molecules into two-dimensional nanostructures in aqueous media.


Asunto(s)
Colorantes , Agua , Cinética , Interacciones Hidrofóbicas e Hidrofílicas , Agua/química
18.
J Chem Phys ; 157(8): 084101, 2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36050040

RESUMEN

The multireference second-order perturbation theory (CASPT2) is known to deliver a quantitative description of various complex electronic states. Despite its near-size-consistent nature, the applicability of the CASPT2 method to large, real-life systems is mostly hindered by large computational and storage costs for the two-external tensors, such as two-electron integrals, amplitudes, and residuum. To this end, Menezes and co-workers developed a reduced-scaling CASPT2 scheme by incorporating the local pair-natural orbital (PNO) representation of the many-body wave functions using non-orthonormal projected atomic orbitals (PAOs) into the CASPT theory [F. Menezes et al., J. Chem. Phys. 145, 124115 (2016)]. Alternatively, in this paper, we develop a new PNO-based CASPT2 scheme using the orthonormal localized virtual molecular orbitals (LVMOs) and assess its performance and accuracy in comparison with the conventional PAO-based counterpart. Albeit the compactness, the LVMOs were considered to perform somewhat poorly compared to PAOs in the local correlation framework because they caused enormously large orbital domains. In this work, we show that the size of LVMO domains can be rendered comparable to or even smaller than that of PAOs by the use of the differential overlap integrals for domain construction. Optimality of the MOs from the CASSCF treatment is a key to reducing the LVMO domain size for the multireference case. Due to the augmented Hessian-based localization algorithm, an additional computational cost for obtaining the LVMOs is relatively minor. We demonstrate that the LVMO-based PNO-CASPT2 method is routinely applicable to large, real-life molecules such as Menshutkin SN2 reaction in a single-walled carbon nanotube reaction field.

19.
Sci Rep ; 12(1): 15091, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36065053

RESUMEN

The orientation factor of fluorescence resonance energy transfer (FRET) between photosynthetic light-harvesting 2 complex (LH2) and artificial fluorophore (Alexa Fluor 647: A647) was theoretically investigated. The orientation factor of 2/3, i.e., the isotropic mean, is widely used to predict the donor-acceptor distance from FRET measurements. However, this approximation seems inappropriate because the movement of A647 is possibly restricted by the bifunctional linker binding to LH2. In this study, we performed molecular dynamics (MD) simulations and electronic coupling calculations on the LH2-A647 conjugate to analyze its orientation factor. The MD results showed that A647 keeps a position approximately 26 Å away from the bacteriochlorophyll (BChl) assembly in LH2. The effective orientation factor was extracted from the electronic coupling calculated using the transition charge from electrostatic potential (TrESP) method. With MD snapshots, an averaged orientation factor was predicted to be 1.55, significantly different from the isotropic mean value. The analysis also suggested that the value of the refractive index employed in the previous studies is not suitable for this system. Furthermore, optimal orientations of A647 with larger orientation factors to improve FRET efficiency were searched using Euler angles. The present approach is useful for extending the applicability of FRET analysis.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Colorantes Fluorescentes , Transferencia Resonante de Energía de Fluorescencia/métodos , Colorantes Fluorescentes/química , Ionóforos , Complejos de Proteína Captadores de Luz/metabolismo , Simulación de Dinámica Molecular , Fotosíntesis
20.
Plant Cell Physiol ; 63(11): 1720-1728, 2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36043692

RESUMEN

The circadian clock, an internal time-keeping system with a period of about 24 h, coordinates many physiological processes with the day-night cycle. We previously demonstrated that BML-259 [N-(5-isopropyl-2-thiazolyl) phenylacetamide], a small molecule with mammal CYCLIN DEPENDENT KINASE 5 (CDK5)/CDK2 inhibition activity, lengthens Arabidopsis thaliana (Arabidopsis) circadian clock periods. BML-259 inhibits Arabidopsis CDKC kinase, which phosphorylates RNA polymerase II in the general transcriptional machinery. To accelerate our understanding of the inhibitory mechanism of BML-259 on CDKC, we performed structure-function studies of BML-259 using circadian period-lengthening activity as an estimation of CDKC inhibitor activity in vivo. The presence of a thiazole ring is essential for period-lengthening activity, whereas acetamide, isopropyl and phenyl groups can be modified without effect. BML-259 analog TT-539, a known mammal CDK5 inhibitor, did not lengthen the period nor did it inhibit Pol II phosphorylation. TT-361, an analog having a thiophenyl ring instead of a phenyl ring, possesses stronger period-lengthening activity and CDKC;2 inhibitory activity than BML-259. In silico ensemble docking calculations using Arabidopsis CDKC;2 obtained by a homology modeling indicated that the different binding conformations between these molecules and CDKC;2 explain the divergent activities of TT539 and TT361.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Relojes Circadianos , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Regulación de la Expresión Génica de las Plantas , Relojes Circadianos/genética , Ritmo Circadiano/genética , Mamíferos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA