Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 281
Filtrar
1.
Mitochondrion ; 78: 101935, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002687

RESUMEN

In recent years, research has increasingly focused on the biogenesis of extracellular vesicles (EVs) and the sorting mechanisms for their contents. Mitochondria can be selectively loaded into EVs, serving as a way to maintain cellular mitochondrial homeostasis. EV-mediated mitochondrial transfer has also been shown to greatly impact the function of target cells. Based on the mechanism of EV-mediated mitochondrial transfer, therapies can be developed to treat human diseases. This review summarizes the recent advances in the biogenesis and molecular composition of EVs. It also highlights the sorting and trafficking mechanisms of mitochondrial components into EVs. Furthermore, it explores the current role of EV-mediated mitochondrial transfer in the development of human diseases, as well as its diagnostic and therapeutic applications.

2.
Brain Spine ; 4: 102852, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39036750

RESUMEN

Introduction: This study is a systematic review and meta-analysis that investigates the efficacy of different surgical methods for treating cervical disc herniation or cervical foraminal stenosis. Research question: The research aimed to compare the efficacy of Minimally Invasive Posterior Cervical Foraminotomy (MI-PCF) with anterior approaches, namely Anterior Cervical Discectomy and Fusion (ACDF) and Cervical Disc Arthroplasty (CDA). Material and methods: The study included a comprehensive review of eight articles that compared ACDF and MI-PCF, and four articles that compared CDA to MI-PCF. Results: The results indicated no significant difference in surgical duration, hospital stay, complication rates, and reoperation rates between MI-PCF and ACDF. However, when comparing CDA with MI-PCF, it was found that CDA had a higher complication rate, while MI-PCF had a higher reoperation rate. Discussion and conclusion: Despite these findings, the study recommends MI-PCF as the preferred surgical method for cervical radiculopathy, owing to the advancements in minimally invasive techniques. However, these findings are preliminary, and further research with longer follow-up periods and larger sample sizes is necessary to confirm these findings and to further explore the potential advantages and disadvantages of these surgical methods.

3.
Nat Commun ; 15(1): 5736, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982049

RESUMEN

Excessive exercise is an etiological factor of intervertebral disc degeneration (IVDD). Engineered extracellular vesicles (EVs) exhibit excellent therapeutic potential for disease-modifying treatments. Herein, we fabricate an exercise self-powered triboelectric-responsive microneedle (MN) assay with the sustainable release of optogenetically engineered EVs for IVDD repair. Mechanically, exercise promotes cytosolic DNA sensing-mediated inflammatory activation in senescent nucleus pulposus (NP) cells (the master cell population for IVD homeostasis maintenance), which accelerates IVDD. TREX1 serves as a crucial nuclease, and disassembly of TRAM1-TREX1 complex disrupts the subcellular localization of TREX1, triggering TREX1-dependent genomic DNA damage during NP cell senescence. Optogenetically engineered EVs deliver TRAM1 protein into senescent NP cells, which effectively reconstructs the elimination function of TREX1. Triboelectric nanogenerator (TENG) harvests mechanical energy and triggers the controllable release of engineered EVs. Notably, an optogenetically engineered EV-based targeting treatment strategy is used for the treatment of IVDD, showing promising clinical potential for the treatment of degeneration-associated disorders.


Asunto(s)
Vesículas Extracelulares , Degeneración del Disco Intervertebral , Agujas , Núcleo Pulposo , Optogenética , Degeneración del Disco Intervertebral/terapia , Degeneración del Disco Intervertebral/metabolismo , Vesículas Extracelulares/metabolismo , Animales , Núcleo Pulposo/metabolismo , Optogenética/métodos , Optogenética/instrumentación , Humanos , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Senescencia Celular , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Ratas , Daño del ADN , Ratones , Masculino , Modelos Animales de Enfermedad , Ratas Sprague-Dawley
4.
J Nanobiotechnology ; 22(1): 457, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085827

RESUMEN

Intervertebral disc degeneration (IVDD) is characterized by the senescence and declining vitality of nucleus pulposus cells (NPCs), often driven by mitochondrial dysfunction. This study elucidates that mesenchymal stem cells (MSCs) play a crucial role in attenuating NPC senescence by secreting mitochondria-containing microvesicles (mitoMVs). Moreover, it demonstrates that static magnetic fields (SMF) enhance the secretion of mitoMVs by MSCs. By distinguishing mitoMV generation from exosomes, this study shifts focus to understanding the molecular mechanisms of SMF intervention, emphasizing cargo transport and plasma membrane budding processes, with RNA sequencing indicating the potential involvement of the microtubule-based transport protein Kif5b. The study further confirms the interaction between Rab22a and Kif5b, revealing Rab22a's role in sorting mitoMVs into microvesicles (MVs) and potentially mediating subsequent plasma membrane budding. Subsequent construction of a gelatin methacrylate (GelMA) hydrogel delivery system further addresses the challenges of in vivo application and verifies the substantial potential of mitoMVs in delaying IVDD. This research not only sheds light on the molecular intricacies of SMF-enhanced mitoMV secretion but also provides innovative perspectives for future IVDD therapeutic strategies.


Asunto(s)
Micropartículas Derivadas de Células , Degeneración del Disco Intervertebral , Campos Magnéticos , Células Madre Mesenquimatosas , Mitocondrias , Núcleo Pulposo , Células Madre Mesenquimatosas/metabolismo , Degeneración del Disco Intervertebral/terapia , Degeneración del Disco Intervertebral/metabolismo , Mitocondrias/metabolismo , Animales , Micropartículas Derivadas de Células/metabolismo , Núcleo Pulposo/metabolismo , Humanos , Ratas , Cinesinas/metabolismo , Células Cultivadas , Ratas Sprague-Dawley , Proteínas de Unión al GTP rab/metabolismo , Masculino
5.
Spine (Phila Pa 1976) ; 49(16): E262-E271, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38800946

RESUMEN

STUDY DESIGN: We constructed finite element (FE) models of the cervical spine consisting of C2-C7 and predicted the biomechanical effects of different surgical procedures and instruments on adjacent segments, internal fixation systems, and the overall cervical spine through FE analysis. OBJECTIVE: To compare the biomechanical effects between the zero-profile device and cage-plate device in skip-level multistage anterior cervical discectomy and fusion (ACDF). SUMMARY OF BACKGROUND DATA: ACDF is often considered the standard treatment for degenerative cervical spondylosis. However, the selection of surgical methods and instruments in cases of skip-level cervical degenerative disk disease is still controversial. MATERIALS AND METHODS: Three FE models were constructed, which used noncontiguous 2-level Zero-P (NCZP) devices for C3/4 and C5/6, a noncontiguous 2-level cage-plate (NCCP) for C3/4 and C5/6, and a contiguous 3-level cage-plate (CCP) for C3/6. Simulate daily activities in ABAQUS. The range of motion (ROM), von Mises stress distribution of the endplate and internal fixation system, and intervertebral disk pressure (IDP) of each model were recorded and compared. RESULTS: Similar to the stress of the cortical bone, the maximum stress of the Zero-P device was higher than that of the CP device for most activities. The ROM increments of the superior, inferior, and intermediate segments of the NCZP model were lower than those of the NCCP and CCP models in many actions. In terms of the IDP, the increment value of stress for the NCZP model was the smallest, whereas those of the NCCP and CCP models were larger. Similarly, the increment value of stress on the endplate also shows the minimum in the NCZP model. CONCLUSIONS: Noncontiguous ACDF with zero profile can reduce the stress on adjacent intervertebral disks and endplates, resulting in a reduced risk of adjacent segment disease development. However, the high cortical bone stress caused by the Zero-P device may influence the risk of fractures.


Asunto(s)
Vértebras Cervicales , Discectomía , Análisis de Elementos Finitos , Degeneración del Disco Intervertebral , Rango del Movimiento Articular , Fusión Vertebral , Vértebras Cervicales/cirugía , Humanos , Fenómenos Biomecánicos/fisiología , Degeneración del Disco Intervertebral/cirugía , Degeneración del Disco Intervertebral/fisiopatología , Fusión Vertebral/métodos , Fusión Vertebral/instrumentación , Discectomía/métodos , Discectomía/instrumentación , Estrés Mecánico , Fijadores Internos , Disco Intervertebral/cirugía , Disco Intervertebral/fisiopatología , Placas Óseas
6.
J Nanobiotechnology ; 22(1): 250, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750519

RESUMEN

The complexity of repairing large segment defects and eradicating residual tumor cell puts the osteosarcoma clinical management challenging. Current biomaterial design often overlooks the crucial role of precisely regulating innervation in bone regeneration. Here, we develop a Germanium Selenium (GeSe) co-doped polylactic acid (PLA) nanofiber membrane-coated tricalcium phosphate bioceramic scaffold (TCP-PLA/GeSe) that mimics the bone-periosteum structure. This biomimetic scaffold offers a dual functionality, combining piezoelectric and photothermal conversion capabilities while remaining biodegradable. When subjected to ultrasound irradiation, the US-electric stimulation of TCP-PLA/GeSe enables spatiotemporal control of neurogenic differentiation. This feature supports early innervation during bone formation, promoting early neurogenic differentiation of Schwann cells (SCs) by increasing intracellular Ca2+ and subsequently activating the PI3K-Akt and Ras signaling pathways. The biomimetic scaffold also demonstrates exceptional osteogenic differentiation potential under ultrasound irradiation. In rabbit model of large segment bone defects, the TCP-PLA/GeSe demonstrates promoted osteogenesis and nerve fibre ingrowth. The combined attributes of high photothermal conversion capacity and the sustained release of anti-tumor selenium from the TCP-PLA/GeSe enable the synergistic eradication of osteosarcoma both in vitro and in vivo. This strategy provides new insights on designing advanced biomaterials of repairing large segment bone defect and osteosarcoma.


Asunto(s)
Regeneración Ósea , Fosfatos de Calcio , Osteogénesis , Osteosarcoma , Andamios del Tejido , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/patología , Animales , Regeneración Ósea/efectos de los fármacos , Andamios del Tejido/química , Conejos , Fosfatos de Calcio/química , Fosfatos de Calcio/farmacología , Osteogénesis/efectos de los fármacos , Poliésteres/química , Humanos , Diferenciación Celular/efectos de los fármacos , Neoplasias Óseas/patología , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/terapia , Línea Celular Tumoral , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Células de Schwann/efectos de los fármacos , Nanofibras/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Selenio/química , Selenio/farmacología
7.
Research (Wash D C) ; 7: 0350, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585329

RESUMEN

Intervertebral disc degeneration (IVDD) is a prevalent cause of low back pain and a leading contributor to disability. IVDD progression involves pathological shifts marked by low-grade inflammation, extracellular matrix remodeling, and metabolic disruptions characterized by heightened glycolytic pathways, mitochondrial dysfunction, and cellular senescence. Extensive posttranslational modifications of proteins within nucleus pulposus cells and chondrocytes play crucial roles in reshaping the intervertebral disc phenotype and orchestrating metabolism and inflammation in diverse contexts. This review focuses on the pivotal roles of phosphorylation, ubiquitination, acetylation, glycosylation, methylation, and lactylation in IVDD pathogenesis. It integrates the latest insights into various posttranslational modification-mediated metabolic and inflammatory signaling networks, laying the groundwork for targeted proteomics and metabolomics for IVDD treatment. The discussion also highlights unexplored territories, emphasizing the need for future research, particularly in understanding the role of lactylation in intervertebral disc health, an area currently shrouded in mystery.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38463606

RESUMEN

Aims: The objective was to compare anxiety, depression, and quality of life (QoL) in individuals living with type 1 (T1D) and type 2 (T2D) diabetes with matched controls during the second wave of the COVID-19 pandemic. Methods: Via randomization, individuals living with diabetes T1D (n= 203) and T2D (n=413), were identified during February-July 2021 through health-care registers. Population controls (n=282) were matched for age, gender, and residential area. Questionnaires included self-assessment of anxiety, depression, QoL, and demographics in relation to SARS-CoV-2 exposure.Blood was collected through home-capillary sampling, and SARS-CoV-2 Nucleocapsid (NCP) and Spike antibodies (SC2_S1) were determined by multiplex Antibody Detection by Agglutination-PCR (ADAP) assays. Results: Younger age and health issues were related to anxiety, depression, and QoL, with no differences between the study groups. Female gender was associated with anxiety, while obesity was associated with lower QoL.The SARS-CoV-2 NCP seroprevalence was higher in T1D (8.9%) compared to T2D (3.9%) and controls (4.0%), while the SARS-CoV-2 SC2_S1 seroprevalence was higher for controls (25.5%) compared to T1D (16.8%) and T2D (14.0%). Conclusions: A higher SARS-CoV-2 infection rate in T1D may be explained by younger age and higher employment rate, and the associated increased risk for viral exposure.

9.
J Clin Invest ; 134(6)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38488012

RESUMEN

As the leading cause of disability worldwide, low back pain (LBP) is recognized as a pivotal socioeconomic challenge to the aging population and is largely attributed to intervertebral disc degeneration (IVDD). Elastic nucleus pulposus (NP) tissue is essential for the maintenance of IVD structural and functional integrity. The accumulation of senescent NP cells with an inflammatory hypersecretory phenotype due to aging and other damaging factors is a distinctive hallmark of IVDD initiation and progression. In this study, we reveal a mechanism of IVDD progression in which aberrant genomic DNA damage promoted NP cell inflammatory senescence via activation of the cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) axis but not of absent in melanoma 2 (AIM2) inflammasome assembly. Ataxia-telangiectasia-mutated and Rad3-related protein (ATR) deficiency destroyed genomic integrity and led to cytosolic mislocalization of genomic DNA, which acted as a powerful driver of cGAS/STING axis-dependent inflammatory phenotype acquisition during NP cell senescence. Mechanistically, disassembly of the ATR-tripartite motif-containing 56 (ATR-TRIM56) complex with the enzymatic liberation of ubiquitin-specific peptidase 5 (USP5) and TRIM25 drove changes in ATR ubiquitination, with ATR switching from K63- to K48-linked modification, c thereby promoting ubiquitin-proteasome-dependent dynamic instability of ATR protein during NP cell senescence progression. Importantly, an engineered extracellular vesicle-based strategy for delivering ATR-overexpressing plasmid cargo efficiently diminished DNA damage-associated NP cell senescence and substantially mitigated IVDD progression, indicating promising targets and effective approaches to ameliorate the chronic pain and disabling effects of IVDD.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Anciano , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Envejecimiento , Senescencia Celular , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Disco Intervertebral/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/farmacología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
10.
J Nanobiotechnology ; 22(1): 31, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38229126

RESUMEN

BACKGROUND: Most bone defects caused by bone disease or trauma are accompanied by infection, and there is a high risk of infection spread and defect expansion. Traditional clinical treatment plans often fail due to issues like antibiotic resistance and non-union of bones. Therefore, the treatment of infected bone defects requires a strategy that simultaneously achieves high antibacterial efficiency and promotes bone regeneration. RESULTS: In this study, an ultrasound responsive vanadium tetrasulfide-loaded MXene (VSM) Schottky junction is constructed for rapid methicillin-resistant staphylococcus aureus (MRSA) clearance and bone regeneration. Due to the peroxidase (POD)-like activity of VS4 and the abundant Schottky junctions, VSM has high electron-hole separation efficiency and a decreased band gap, exhibiting a strong chemodynamic and sonodynamic antibacterial efficiency of 94.03%. Under the stimulation of medical dose ultrasound, the steady release of vanadium element promotes the osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). The in vivo application of VSM in infected tibial plateau bone defects of rats also has a great therapeutic effect, eliminating MRSA infection, then inhibiting inflammation and improving bone regeneration. CONCLUSION: The present work successfully develops an ultrasound responsive VS4-based versatile sonosensitizer for robust effective antibacterial and osteogenic therapy of infected bone defects.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Osteogénesis , Humanos , Ratas , Animales , Vanadio/farmacología , Regeneración Ósea , Antibacterianos/farmacología
12.
Adv Mater ; 36(2): e2307846, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37855420

RESUMEN

Elimination of bacterial infections and simultaneously promoting osteogenic differentiation are highly required for infectious bone diseases. Massive reactive oxygen species (ROS) can damage cells, while low ROS concentrations as a molecular signal can regulate cellular fate. In this study, a Janus-ROS healing system is developed for infectious bone regeneration. An alendronate (ALN)-mediated defective metal-organic framework (MOF) sonosensitizer is prepared, which can effectively clear Methicillin-resistant Staphylococcus aureus (MRSA) infections and promote osteogenic differentiation under differential ultrasonic irradiation. In the presence of zirconium-phosphate coordination, the ALN-mediated porphyrin-based MOF (HN25) with a proper defect has great sonodynamic antibacterial efficiency (98.97%, 15 min) and bone-targeting ability. Notably, under low-power ultrasound irradiation, HN25 can increase the chromatin accessibility of ossification-related genes and FOXO1 to promote bone repair through low ROS concentrations. Animal models of paravertebral infection, fracture with infection, and osteomyelitis demonstrate that HN25 successfully realizes the targeted and potent repair of various infectious bone tissues through rapid MRSA elimination, inhibiting osteoclast activity and promoting bone regeneration. The results show that high catalytic efficiency and bioactive MOF can be constructed using pharmaceutical-mediated defect engineering. The Janus-ROS treatment is also a promising therapeutic mode for infectious tissue regeneration.


Asunto(s)
Estructuras Metalorgánicas , Staphylococcus aureus Resistente a Meticilina , Animales , Osteogénesis , Especies Reactivas de Oxígeno , Regeneración Ósea , Huesos
13.
Free Radic Biol Med ; 212: 220-233, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38158052

RESUMEN

Nucleus pulposus (NP) cell function-loss is one main contributor during intervertebral disc degeneration (IDD) progression. Both mitochondria and endoplasmic reticulum (ER) play vital roles in sustaining NP cell homeostasis, while the precise function of ER-mitochondria tethering and cross talk in IDD remain to be clarified. Here, we demonstrated that a notable disruption of mitochondria-associated ER membrane (MAM) was identified in degenerated discs and TBHP-induced NP cells, accompanied by mitochondrial Zn2+ overload and NP cell senescence. Importantly, experimental coupling of MAM contacts by MFN2, a critical regulator of MAM formation, could enhance NLRX1-SLC39A7 complex formation and mitochondrial Zn2+ homeostasis. Further using the sequencing data from TBHP-induced degenerative model of NP cells, combining the reported MAM proteomes, we demonstrated that SYNJ2BP loss was one critical pathological characteristic of NP cell senescence and IDD progression, which showed close relationship with MAM disruption. Overexpression of SYNJ2BP could facilitate MAM contact organization and NLRX1-SLC39A7 complex formation, thus promoted mitochondrial Zn2+ homeostasis, NP cell proliferation and intervertebral disc rejuvenation. Collectively, our present study revealed a critical role of SYNJ2BP in maintaining mitochondrial Zn2+ homeostasis in NP cells during IDD progression, partially via sustaining MAM contact and NLRX1-SLC39A7 complex formation.


Asunto(s)
Proteínas de Transporte de Catión , Degeneración del Disco Intervertebral , Humanos , Degeneración del Disco Intervertebral/metabolismo , Mitocondrias/metabolismo , Retículo Endoplásmico/metabolismo , Homeostasis , Zinc/metabolismo , Apoptosis , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo
14.
Clin Transl Med ; 13(12): e1494, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38037469

RESUMEN

BACKGROUND: Growing evidence has suggested the role of stem cell-derived small extracellular vesicles (sEVs) in intervertebral disc degeneration (IVDD). The cargo sorting of sEVs, particularly miRNAs, may be influenced when the donor cell is subjected to oxidative stress. Here, we discovered that miRNAs containing specific motifs are selectively sorted into intraluminal vesicles within mesenchymal stem cells (MSCs) in response to oxidative stress. METHODS: Analysis of miRNA cargoes in sEVs derived from normal MSCs (C-sEVs) or stressed MSCs (T-sEVs) was conducted using miRNA sequencing. Differential expressed miRNAs in sEVs and the identification of motifs were evaluated through bioinformatics analysis. Protein binding was assessed using immunofluorescent staining and immunoprecipitation analysis. Additionally, RNA pull down and RNA immunoprecipitation (RIP) immunoprecipitation were employed to determine the binding between miRNAs and proteins. The effects of C-sEVs and T-sEVs on IVDD were compared by detecting the expression levels of phenotypic genes in vitro or histological evaluation in vivo. RESULTS: The sorting process of miRNAs is mediated by the nucleocytoplasmic transport of heterogeneous nuclear ribonucleoproteins, which in turn facilitates the phosphorylation of SNAP25 and promotes the transport and secretion of sEVs. Additionally, CHMP1B plays a role in membrane repair and protects against cell ferroptosis upon oxidative stress, concurrently affecting the release of sEVs. Notably, stem cell-derived sEVs associated with ferroptosis impair the therapeutic efficacy for IVDD. However, the application of engineered sEVs containing a specific miRNA inhibitor exhibits the potential to reinstate the therapeutic efficacy for IVDD both in vitro and in vivo. CONCLUSIONS: Taken together, our findings shed light on the mechanism of miRNAs sorting into sEVs and offer new insights for the optimization of sEV-based treatments during intervertebral disc regeneration. regeneration.


Asunto(s)
Vesículas Extracelulares , Degeneración del Disco Intervertebral , Células Madre Mesenquimatosas , MicroARNs , Humanos , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/terapia , Células Madre , MicroARNs/genética , Vesículas Extracelulares/genética
15.
Cell Mol Biol Lett ; 28(1): 104, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38093179

RESUMEN

BACKGROUND: Intervertebral disc degeneration (IVDD) is the major cause of low-back pain. Histone deacetylase 9 (HDAC9) was dramatically decreased in the degenerative nucleus pulposus (NP) samples of patients with intervertebral disc degeneration (IVDD) according to bioinformatics analysis of Gene Expression Omnibus (GEO) GSE56081 dataset. This study aims to investigate the role of HDAC9 in IVDD progression. METHODS: The contribution of HDAC9 to the progression of IVDD was assessed using HDAC9 knockout (HDAC9KO) mice and NP-targeted HDAC9-overexpressing mice by IVD injection of adenovirus-mediated HDAC9 under a Col2a1 promoter. Magnetic resonance imaging (MRI) and histological analysis were used to examine the degeneration of IVD. NP cells were isolated from mice to investigate the effects of HDAC9 on apoptosis and viability. mRNA-seq and coimmunoprecipitation/mass spectrometry (co-IP/MS) analysis were used to analyze the HDAC9-regulated factors in the primary cultured NP cells. RESULTS: HDAC9 was statistically decreased in the NP tissues in aged mice. HDAC9KO mice spontaneously developed age-related IVDD compared with wild-type (HDAC9WT) mice. In addition, overexpression of HDAC9 in NP cells alleviated IVDD symptoms in a surgically-induced IVDD mouse model. In an in vitro assay, knockdown of HDAC9 inhibited cell viability and promoted cell apoptosis of NP cells, and HDAC9 overexpression had the opposite effects in NP cells isolated from HDAC9KO mice. Results of mRNA-seq and co-IP/MS analysis revealed the possible proteins and signaling pathways regulated by HDAC9 in NP cells. RUNX family transcription factor 3 (RUNX3) was screened out for further study, and RUNX3 was found to be deacetylated and stabilized by HDAC9. Knockdown of RUNX3 restored the effects of HDAC9 silencing on NP cells by inhibiting apoptosis and increasing viability. CONCLUSION: Our results suggest that HDAC9 plays an important role in the development and progression of IVDD. It might be required to protect NP cells against the loss of cell viability and apoptosis by inhibiting RUNX3 acetylation and expression during IVDD. Together, our findings suggest that HDAC9 may be a potential therapeutic target in IVDD.


Asunto(s)
Degeneración del Disco Intervertebral , Núcleo Pulposo , Animales , Humanos , Ratones , Apoptosis , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histona Desacetilasas/farmacología , Degeneración del Disco Intervertebral/genética , Núcleo Pulposo/metabolismo , Proteínas Represoras/metabolismo , ARN Mensajero/metabolismo , Transducción de Señal
16.
Exploration (Beijing) ; 3(4): 20220090, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37933231

RESUMEN

Triboelectric nanogenerators (TENGs) are new energy collection devices that have the characteristics of high efficiency, low cost, miniaturization capability, and convenient manufacture. TENGs mainly utilize the triboelectric effect to obtain mechanical energy from organisms or the environment, and this mechanical energy is then converted into and output as electrical energy. Bioelectricity is a phenomenon that widely exists in various cellular processes, including cell proliferation, senescence, apoptosis, as well as adjacent cells' communication and coordination. Therefore, based on these features, TENGs can be applied in organisms to collect energy and output electrical stimulation to act on cells, changing their activities and thereby playing a role in regulating cellular function and interfering with cellular fate, which can further develop into new methods of health care and disease intervention. In this review, we first introduce the working principle of TENGs and their working modes, and then summarize the current research status of cellular function regulation and fate determination stimulated by TENGs, and also analyze their application prospects for changing various processes of cell activity. Finally, we discuss the opportunities and challenges of TENGs in the fields of life science and biomedical engineering, and propose a variety of possibilities for their potential development direction.

17.
Neurosurgery ; 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37991353

RESUMEN

BACKGROUND AND OBJECTIVES: Severe rigid spinal scoliosis (SRSS) leads to severe restrictive ventilation dysfunction. Currently, the reports about the influence of preoperative halo-pelvic traction (HPT) combined with correction surgery on pulmonary function in patients with SRSS were relatively few. This study aims to investigate (1) the influence of preoperative HPT on lung volume and pulmonary function, (2) the further influence of the following correction surgery on lung volume and pulmonary function, and (3) the relationship among deformity correction, pulmonary function test outcomes, and computed tomography-based lung volume. METHODS: A total of 135 patients with SRSS who underwent preoperative HPT and followed low-grade osteotomy correction surgery were reviewed. Spinal parameters, including proximal thoracic curve, main thoracic curve (MTC), lumbar curve, coronal balance, thoracic kyphosis, lumbar lordosis, sagittal vertical axis, pulmonary function test outcomes (forced vital capacity [FVC], the percentage of predicted forced vital capacity [FVC%], forced expiratory volume in 1 second [FEV1], total lung capacity [TLC]), and lung volume (Vin), were analyzed before, after HPT and at the final follow-up, respectively. RESULTS: The mean FVC, FVC%, FEV1, and TLC increased from 1.67 L, 51.13%, 1.47 L, and 2.37 L to 1.95 L, 64.35%, 1.75 L, and 2.78 L, respectively, after HPT and further improved to 2.22 L, 72.14%, 1.95 L, and 3.15 L, respectively, at the final follow-up. The mean Vin increased from 1.98 L to 2.42 L after traction and further increased to 2.76 L at the final follow-up. The variation of MTC was correlated with the improvement of FVC (r = 0.429, P = .026), FVC% (r = 0.401, P = .038), FEV1 (r = 0.340, P = .043), and TLC (r = 0.421, P = .029) and the variation of Vin (r = 0.425, P = .015) before HPT and after surgery. CONCLUSION: Preoperative HPT can improve preoperative pulmonary function and enhance the preoperative lung volume. There were significant correlations among the variations of MTC, pulmonary function indexes, and lung volume before HPT and after surgery in patients with SRSS.

18.
Autophagy ; : 1-21, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37876250

RESUMEN

Intervertebral disc degeneration (IDD) is the most critical pathological factor in the development of low back pain. The maintenance of nucleus pulposus (NP) cell and intervertebral disc integrity benefits largely from well-controlled mitochondrial quality, surveilled by mitochondrial dynamics (fission and fusion) and mitophagy, but the outcome is cellular context-dependent that remain to be clarified. Our studies revealed that the loss of NLRX1 is correlated with NP cell senescence and IDD progression, which involve disordered mitochondrial quality. Further using animal and in vitro tissue and cell models, we demonstrated that NLRX1 could facilitate mitochondrial quality by coupling mitochondrial dynamic factors (p-DNM1L, L-OPA1:S-OPA1, OMA1) and mitophagy activity. Conversely, mitochondrial collapse occurred in NLRX1-defective NP cells and switched on the compensatory PINK1-PRKN pathway that led to excessive mitophagy and aggressive NP cell senescence. Mechanistically, NLRX1 was originally shown to interact with zinc transporter SLC39A7 and modulate mitochondrial Zn2+ trafficking via the formation of an NLRX1-SLC39A7 complex on the mitochondrial membrane of NP cells, subsequently orchestrating mitochondrial dynamics and mitophagy. The restoration of NLRX1 function by gene overexpression or pharmacological agonist (NX-13) treatment showed great potential for regulating mitochondrial fission with synchronous fusion and mitophagy, thus sustaining mitochondrial homeostasis, ameliorating NP cell senescence and rejuvenating intervertebral discs. Collectively, our findings highlight a working model whereby the NLRX1-SLC39A7 complex coupled mitochondrial dynamics and mitophagy activity to surveil and target damaged mitochondria for degradation, which determines the beneficial function of the mitochondrial surveillance system and ultimately rejuvenates intervertebral discs.Abbreviations: 3-MA: 3-methyladenine; Baf-A1: bafilomycin A1; CDKN1A/p21: cyclin dependent kinase inhibitor 1A; CDKN2A/p16: cyclin dependent kinase inhibitor 2A; DNM1L/DRP1: dynamin 1 like; EdU: 5-Ethynyl-2'-deoxyuridine; HE: hematoxylin-eosin; IDD: intervertebral disc degeneration; IL1B/IL-1ß: interleukin 1 beta; IL6: interleukin 6; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MKI67/Ki67: marker of proliferation Ki-67; LBP: low back pain; MMP: mitochondrial membrane potential; MFN1: mitofusin 1; MFN2: mitofusin 2; MFF: mitochondrial fission factor; NP: nucleus pulposus; NLRX1: NLR family member X1; OMA1: OMA1 zinc metallopeptidase; OPA1: OPA1 mitochondrial dynamin like GTPase; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxidative species; SASP: senescence-associated secretory phenotype; SA-GLB1/ß-gal: senescence-associated galactosidase beta 1; SO: safranin o; TBHP: tert-butyl hydroperoxide; TP53/p53: tumor protein p53; SLC39A7/ZIP7: solute carrier family 39 member 7; TOMM20: translocase of outer mitochondrial membrane 20; TIMM23: translocase of inner mitochondrial membrane 23.

19.
J Transl Med ; 21(1): 711, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37817199

RESUMEN

BACKGROUND: Extracellular matrix stiffness is emerging as a crucial mechanical cue that drives the progression of various diseases, such as cancer, fibrosis, and inflammation. The matrix stiffness of the nucleus pulposus (NP) tissues increase gradually during intervertebral disc degeneration (IDD), while the mechanism through which NP cells sense and react to matrix stiffness remains unclear. In addition, mitochondrial dynamics play a key role in various cellular functions. An in-depth investigation of the pathogenesis of IDD can provide new insights for the development of effective therapies. In this study, we aim to investigate the effects of matrix stiffness on mitochondrial dynamics in IDD. METHODS: To build the gradient stiffness model, NP cells were cultured on polystyrene plates with different stiffness. Western blot analysis, and immunofluorescence staining were used to detect the expression of mitochondrial dynamics-related proteins. Flow cytometry was used to detect the mitochondrial membrane potential and intracellular Ca2+ levels. Apoptosis related proteins, ROS level, and TUNEL staining were performed to assess the effect of substrate stiffness on NP cells. RESULTS: Stiff substrate increased phosphorylation of dynamin-related protein 1 (Drp1) at Ser616 by activating extracellular signal-regulated kinase 1/2 (ERK1/2) pathway, which promoted mitochondrial fission and apoptosis in NP cells. Furthermore, Piezo1 activation was involved in the regulation of the post-translational modifications of Drp1 and mitochondrial fission caused by matrix stiffness. Inhibition of Piezo1 and ERK1/2 can effectively reduce stiffness-induced ROS elevation and apoptosis in NP cells. CONCLUSIONS: Our results revealed that stiff substrate causes Piezo1 activation and Ca2+ influx, results in ERK1/2 activation and phosphorylation of Drp1 at S616, and finally leads to mitochondrial fission and apoptosis in NP cells. These findings reveal a new mechanism of mechanotransduction in NP cells, providing novel insights into the development of therapies for treating IDD.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Humanos , Degeneración del Disco Intervertebral/patología , Dinámicas Mitocondriales , Mecanotransducción Celular , Especies Reactivas de Oxígeno/metabolismo , Apoptosis , Dinaminas/metabolismo , Dinaminas/farmacología , Disco Intervertebral/patología
20.
Acta Biomater ; 172: 343-354, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37816416

RESUMEN

Infection of bone defects remains a challenging issue in clinical practice, resulting in various complications. The current clinical treatments include antibiotic therapy and surgical debridement, which can cause drug-resistance and potential postoperative complications. Therefore, there is an urgent need for an efficient treatment to sterilize and promote bone repair in situ. In this work, an ultrasound responsive selenium modified barium titanate nanoparticle (Se@BTO NP) was fabricated, which exhibited significant antibacterial and bone regeneration effects. Selenium nanoparticle (Se NP) was modified on the surface of barium titanate nanoparticle (BTO NP) to form heterostructure, which facilitated the second distribution of piezo-induced carriers under ultrasound (US) irradiation and improved the separation of electron-hole pairs. The Se@BTO NPs exhibited remarkable antibacterial efficiency with an antibacterial rate of 99.23 % against Staphylococcus aureus (S.aureus) and significantly promoted the osteogenic differentiation under ultrasound irradiation. The in vivo experiments exhibited that Se@BTO NPs successfully repaired the femoral condylar bone defects of rats infected by S.aureus, resulting in significant promotion of bone regeneration. Overall, this work provided an innovative strategy for the utilization of US responsive nanomaterials in efficient bacteria elimination and bone regeneration. STATEMENT OF SIGNIFICANCE: Infectious bone defects remain a challenging issue in clinical practice. Current antibiotic therapy and surgical debridement has numerous limitations such as drug-resistance and potential complications. Herein, we designed an innovative ultrasound responsive selenium modified barium titanate nanoparticle (Se@BTO NP) to achieve efficient non-invasive bacteria elimination and bone regeneration. In this work, Se@BTO nanoparticles can enhance the separation of electrons and holes, facilitate the transfer of free carriers due to the cooperative effect of ultrasound induced piezoelectric field and heterojunction construction, and thus exhibit remarkable antibacterial and osteogenesis effect. Overall, our study provided a promising strategy for the utilization of piezocatalytic nanomaterials in efficient antibacterial and bone regeneration.


Asunto(s)
Nanopartículas , Selenio , Infecciones Estafilocócicas , Ratas , Animales , Osteogénesis , Selenio/química , Bario/farmacología , Nanopartículas/uso terapéutico , Nanopartículas/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/química , Staphylococcus aureus , Bacterias , Infecciones Estafilocócicas/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA