Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cell Rep Med ; 4(7): 101118, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37467727

RESUMEN

In this issue of Cell Reports Medicine, Aid and colleagues define peripheral blood biomarkers, which predict viral rebound after antiretroviral therapy (ART) discontinuation in SIV-infected rhesus macaques treated early with ART, providing insights into potential HIV cure strategies.1.


Asunto(s)
Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Macaca mulatta , Replicación Viral , Infecciones por VIH/tratamiento farmacológico , Biomarcadores
2.
Sci China Life Sci ; 66(9): 1994-2005, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37300752

RESUMEN

With gradual ban on the use of antibiotics, the deficiency and excessive use of trace elements in intestinal health is gaining attention. In mammals, trace elements are essential for the development of the immune system, specifically T-cell proliferation, and differentiation. However, there remain significant gaps in our understanding of the effects of certain trace elements on T-cell immune phenotypes and functions in pigs. In this review, we summarize the specificity, development, subpopulations, and responses to pathogens of porcine T cells and the effects of functional trace elements (e.g., iron, copper, zinc, and selenium) on intestinal T-cell immunity during early-life health in pigs. Furthermore, we discuss the current trends of research on the crosstalk mechanisms between trace elements and T-cell immunity. The present review expands our knowledge of the association between trace elements and T-cell immunity and provides an opportunity to utilize the metabolism of trace elements as a target to treat various diseases.


Asunto(s)
Selenio , Oligoelementos , Porcinos , Animales , Linfocitos T , Zinc , Cobre , Mamíferos
3.
Biomedicines ; 11(6)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37371802

RESUMEN

Antiretroviral therapy is capable of inhibiting HIV replication, but it fails to completely achieve a cure due to HIV persistence. The commonly used HIV cure approach is the "shock and kill" strategy, which employs latency-reversing agents to trigger viral reactivation and boost cellular immunity. Finding the appropriate drug combination for the "shock and kill" strategy would greatly facilitate clinical trials. The toll-like receptor (TLR) 7 agonist GS-9620 and nicotinamide (NAM) are reported as potential latency-reversing agents. Herein, we found the absence of viral reactivation when SHIVSF162P3-aviremic rhesus macaques were treated with GS-9620 monotherapy. However, our findings demonstrate that viral blips emerged in half of the macaques treated with the combination therapy of GS-9620 and NAM. Notably, an increase in the reactivation of the replication-competent latent virus was measured in monkeys treated with the combination therapy. These findings suggest that the GS-9620 and NAM combination could be used as a multipronged HIV latency stimulation approach, with potential for optimizing antiviral therapy design.

4.
Pathol Oncol Res ; 29: 1611081, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168048

RESUMEN

Despite significant advances in the diagnosis and treatment of esophageal squamous cell carcinoma (ESCC), esophageal cancer is still a heavy social and medical burden due to its high incidence. Uncontrolled division and proliferation is one of the characteristics of tumor cells, which will promote rapid tumor growth and metastasis. Early mitotic inhibitor 1 (Emi1), ubiquitin-conjugating enzyme 10 (UBCH10) and CyclinB1 are important proteins involved in the regulation of cell cycle. In this study, the expression of Emi1, UBCH10 and CyclinB1 in ESCC tissues and adjacent normal tissues will be analyzed by immunohistochemistry and in-situ hybridization techniques, and their relationship with tumor proliferation and apoptosis will be analyzed. The results showed that Emi1, UBCH10 and CyclinB1 genes and proteins were highly expressed in tumor tissues, which were correlated with tumor grade, lymph node metastasis and pathological stage, and positively correlated with tumor proliferation. Emi1, UBCH10 and CyclinB1 are also positively correlated. It is speculated that Emi1, UBCH10 and CyclinB1 genes synergically promote tumor proliferation and inhibit apoptosis, which may be potential diagnostic and therapeutic targets for ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Regulación Neoplásica de la Expresión Génica , Inmunohistoquímica , Enzimas Ubiquitina-Conjugadoras/genética
5.
Cancer Med ; 12(13): 14468-14483, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37184125

RESUMEN

BACKGROUND: Esophageal squamous cell carcinoma (ESCC), an aggressive gastrointestinal tumor, often has high early lymphatic metastatic potential. Cancer-associated fibroblasts (CAFs) are primary components in tumor microenvironment (TME), and the impact of CAFs and its derived exosomes on lymphangiogenesis remains elusive. MATERIALS AND METHODS: CAFs and the microlymphatic vessel density (MLVD) in ESCC was examined. Exosomes were extracted from primary normal fibroblast (NFs) and CAFs. Subsequently, tumor-associated lymphatic endothelial cells (TLECs) were treated with these exosomes, and the effect on their biological behavior was examined. miR-100-5p was selected as the target miRNA, and its effect on TLECs was examined. The target of miR-100-5p was predicted and confirmed. Subsequently, IGF1R, PI3K, AKT, and p-AKT expression in TLECs and tumors treated with exosomes and miR-100-5p were examined. RESULTS: A large number of CAFs and microlymphatic vessels were present in ESCC, leading to a poor prognosis. CAF-derived exosomes promoted proliferation, migration, invasion, and tube formation in TLECs. Further, they also enhanced lymphangiogenesis in ESCC xenografts. miR-100-5p levels were significantly lower in CAF-derived exosomes than in NF-derived exosomes. miR-100-5p inhibited proliferation, migration, invasion, and tube formation in TLECs. Further, miR-100-5p inhibited lymphangiogenesis in ESCC xenografts. Mechanistic studies revealed that this inhibition was mediated by the miR-100-5p-induced inhibition of IGF1R/PI3K/AKT axis. CONCLUSION: Taken together, our study demonstrates that CAF-derived exosomes with decreased miR-100-5p levels exhibit pro-lymphangiogenesis capacity, suggesting a possibility of targeting IGF1R/PI3K/AKT axis as a strategy to inhibit lymphatic metastasis in ESCC.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Exosomas , MicroARNs , Humanos , Carcinoma de Células Escamosas de Esófago/patología , Neoplasias Esofágicas/patología , Regulación hacia Abajo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Exosomas/metabolismo , Linfangiogénesis/genética , Células Endoteliales/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proliferación Celular , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Regulación Neoplásica de la Expresión Génica , Movimiento Celular , Microambiente Tumoral/genética
6.
Int J Oncol ; 62(6)2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37144499

RESUMEN

Multiple myeloma (MM) is one of the three major malignancies of the hematological system in middle­aged and older individuals. The incidence of MM increases with age and due to its drug resistance and high recurrence, MM seriously harms human health. Long non­coding RNAs (lncRNAs) are RNA molecules with a length of >200 nt and rarely encode proteins. Numerous studies reported that lncRNAs regulate carcinogenesis and cancer progression. MM­associated lncRNAs affect features of tumor cells, including proliferation, apoptosis, adhesion and treatment resistance. The present review aims to summarize the latest findings on the roles of lncRNAs in MM to deepen the understanding of this field and provide insight for developing specific diagnostic tools and effective treatment strategies for MM, including novel biomarkers and targeted lncRNA therapeutics.


Asunto(s)
Mieloma Múltiple , ARN Largo no Codificante , Humanos , Persona de Mediana Edad , Anciano , Mieloma Múltiple/genética , Mieloma Múltiple/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Carcinogénesis/genética
7.
Foods ; 12(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37048175

RESUMEN

Tartary buckwheat is a common functional food. Its grains are rich in flavonoids and phenols. The rapid measurement of flavonoids and phenols in buckwheat grains is of great significance in promoting the development of the buckwheat industry. This study, based on multiple scattering correction (MSC), standardized normal variate (SNV), reciprocal logarithm (Lg), first-order derivative (FD), second-order derivative (SD), and fractional-order derivative (FOD) preprocessing spectra, constructed hyperspectral monitoring models of total flavonoids content and total phenols content in tartary buckwheat grains. The results showed that SNV, Lg, FD, SD, and FOD preprocessing had different effects on the original spectral reflectance and that FOD can also reflect the change process from the original spectrum to the integer-order derivative spectrum. Compared with the original spectrum, MSC, SNV, Lg, FD, and SD transformation spectra can improve the correlation between spectral data and total flavonoids and total phenols in varying degrees, while the correlation between FOD spectra of different orders and total flavonoids and total phenols in grains was different. The monitoring models of total flavonoids and total phenols in grains based on MSC, SNV, Lg, FD, and SD transformation spectra achieved the best accuracy under SD and FD transformation, respectively. Therefore, this study further constructed monitoring models of total flavonoids and total phenols content in grains based on the FOD spectrum and achieved the best accuracy under 1.6 and 0.6 order derivative preprocessing, respectively. The R2c, RMSEc, R2v, RMSEv, and RPD were 0.8731, 0.1332, 0.8384, 0.1448, and 2.4475 for the total flavonoids model, and 0.8296, 0.2025, 0.6535, 0.1740, and 1.6713 for the total phenols model. The model can realize the rapid measurement of total flavonoids content and total phenols content in tartary buckwheat grains, respectively.

8.
Front Plant Sci ; 14: 1158837, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063231

RESUMEN

Leaf area index (LAI) is an essential indicator for crop growth monitoring and yield prediction. Real-time, non-destructive, and accurate monitoring of crop LAI is of great significance for intelligent decision-making on crop fertilization, irrigation, as well as for predicting and warning grain productivity. This study aims to investigate the feasibility of using spectral and texture features from unmanned aerial vehicle (UAV) multispectral imagery combined with machine learning modeling methods to achieve maize LAI estimation. In this study, remote sensing monitoring of maize LAI was carried out based on a UAV high-throughput phenotyping platform using different varieties of maize as the research target. Firstly, the spectral parameters and texture features were extracted from the UAV multispectral images, and the Normalized Difference Texture Index (NDTI), Difference Texture Index (DTI) and Ratio Texture Index (RTI) were constructed by linear calculation of texture features. Then, the correlation between LAI and spectral parameters, texture features and texture indices were analyzed, and the image features with strong correlation were screened out. Finally, combined with machine learning method, LAI estimation models of different types of input variables were constructed, and the effect of image features combination on LAI estimation was evaluated. The results revealed that the vegetation indices based on the red (650 nm), red-edge (705 nm) and NIR (842 nm) bands had high correlation coefficients with LAI. The correlation between the linearly transformed texture features and LAI was significantly improved. Besides, machine learning models combining spectral and texture features have the best performance. Support Vector Machine (SVM) models of vegetation and texture indices are the best in terms of fit, stability and estimation accuracy (R2 = 0.813, RMSE = 0.297, RPD = 2.084). The results of this study were conducive to improving the efficiency of maize variety selection and provide some reference for UAV high-throughput phenotyping technology for fine crop management at the field plot scale. The results give evidence of the breeding efficiency of maize varieties and provide a certain reference for UAV high-throughput phenotypic technology in crop management at the field scale.

9.
Ying Yong Sheng Tai Xue Bao ; 34(2): 463-470, 2023 Feb.
Artículo en Chino | MEDLINE | ID: mdl-36803724

RESUMEN

Frequent occurrence of drought disaster will seriously affect the growth and development of winter wheat (Triticum aestivum). We set different water stress treatments (80%, 60%, 45%, 35%, 30% of field water capacity) to simulate the severity of drought disaster. We measured free proline content (Pro) of winter wheat, and investigated the responses of Pro to canopy spectral reflectance under water stress. Three methods, i.e., correlation analysis and stepwise multiple linear regression (CA+SMLR), partial least squares and stepwise multiple linear regression (PLS+SMLR), and successive projections algorithm (SPA) were used to extract the hyperspectral cha-racteristic region and characteristic band of proline. Furthermore, partial least square regression (PLSR) and multiple linear regression (MLR) methods were used to establish the predicted models. The results showed that Pro content of winter wheat was higher under water stress, and that the spectral reflectance of canopy changed regularly in different bands, indicating that Pro content of winter wheat was sensitive to water stress. The content of Pro was highly correlated with the red edge of canopy spectral reflectance, with the 754, 756 and 761 nm bands being sensitive to Pro change. The PLSR model performed good, followed by the MLR model, both showing good predictive ability and high model accuracy. In general, it was feasible to monitor Pro content of winter wheat by hyperspectral technique.


Asunto(s)
Deshidratación , Triticum , Algoritmos , Modelos Lineales , Estaciones del Año
10.
Life (Basel) ; 12(10)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36294914

RESUMEN

Wheat is the third most producing crop in China after maize and rice. In order to enhance the nitrogen use efficiency (NUE) and grain yield of winter wheat, a two-year field experiment was conducted to investigate the effect of different nitrogen ratios and doses at various development stages of winter wheat (Triticum aestivum L.). A total of five N doses (0, N75, N150, N225, and N300 kg ha-1) as main plots and two N ratios were applied in split doses (50%:50% and 60%:40%, referring to 50% at sowing time and 50% at jointing stage, 50% at sowing time + 50% at flowering stage, 50% at sowing time + 50% at grain filling stage, and 60% + 40% N ratio applied as a 60% at sowing time and 40% at jointing stage, 60% at sowing time and 40% at flowering stage, and 60% at sowing time and 40% at grain filling stage in subplots). The results of this study revealed that a nitrogen dose of 225 kg ha-1 significantly augmented the plant height by 27% and above ground biomass (ABG) by 24% at the grain filling stage, and the leaf area was enhanced by 149% at the flowering stage under 60 + 40% ratios. Furthermore, the N225 kg ha-1 significantly prompted the photosynthetic rate by 47% at the jointing and flowering stages followed by grain filling stage compared to the control. The correlation analysis exhibited the positive relationship between nitrogen uptake and nitrogen content, chlorophyll, and dry biomass, revealing that NUE enhanced and ultimately increased the winter wheat yield. In conclusion, our results depicted that optimizing the nitrogen dose (N225 kg/ha-1) with a 60% + 40% ratio at jointing stage increased the grain yield and nitrogen utilization rate.

11.
Cancer Treat Res Commun ; 32: 100621, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36007473

RESUMEN

In cancer, tumor-associated macrophages (TAMs) possess crucial functions in facilitating epithelial-mesenchymal transition (EMT). EMT is a crucial process in tumor metastasis. Tumor metastasis is one of the hallmarks of cancer and leads to patient mortality. Cancer cells often find ways to evade being detected and attacked by the immune system. This is achieved by cross-talk between cancer cells and the altered microenvironment. The accumulation of tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) creates an immunosuppressive and tumor-supportive environment. Circulating monocytes and macrophages which are recruited into tumors are defined as tumor-associated macrophages once in the TME. Based on the activated stimuli and function, macrophages can be divided into M1 macrophages and M2 macrophages. M1 macrophages, also known as classically activated macrophages, exhibit pro-inflammatory and antitumor activities. M2 macrophages, also known as alternatively activated macrophages, exhibit anti-inflammatory, pro-tumorigenic, and wound healing activities. TAMs are considered to be of the M2 phenotype. The TME polarizes recruited macrophages into M2 macrophages as they provide an immunosuppressive pro-tumoral environment. Accumulating studies show that the presence of TAMs in esophageal squamous cell carcinoma (ESCC) leads to tumor progression. In this review, we discuss how EMT can be used by TAMs to cause tumor migration and metastasis in ESCC. We also discuss the potential therapies targeting TAMs.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Línea Celular Tumoral , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/patología , Humanos , Macrófagos/patología , Repitelización , Microambiente Tumoral
12.
J Sci Food Agric ; 102(15): 6868-6876, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35642942

RESUMEN

BACKGROUND: As a potential selenium-enriched crop, it is of great significance to study the selenium application of Tartary buckwheat. Therefore, to study the effects of selenium application concentration, variety, selenium application period and method on the grain selenium content and yield of Tartary buckwheat, an orthogonal experimental design was used to carry out field experiments in the Jinzhong and Northwest Shanxi ecological regions at the same time. Heifeng 1 and Jinqiao 2 were applied at the branching stage and flowering stage in the Jinzhong, and Heifeng 1 and Jinqiao 6 were applied at the early flowering stage and peak flowering stage in the Northwest Shanxi with different concentrations of sodium selenite (0, 1.37, 2.74, 5.48, 8.22, 12.33, 18.495, 27.7425 g hm-2 ) by foliar spraying and soil application. RESULTS: The results showed that the selenium content in Tartary buckwheat grains was positively correlated with the selenium application concentration and increased with increasing selenium application concentration, while the yield of Tartary buckwheat first increased and then decreased with the selenium application concentration. The grain selenium content and yield of Tartary buckwheat were affected by the selenium application concentration, variety and application method. CONCLUSION: The most effective selenium biofortification program was spraying 2.32 g hm-2 sodium selenite on the leaves of Heifeng 1 at the early flowering stage in the Jinzhong. In the Northwest Shanxi, spraying 11.01 g hm-2 sodium selenite on the leaves of Jinqiao 6 at the flowering stage was the most effective selenium biofortification program. © 2022 Society of Chemical Industry.


Asunto(s)
Fagopyrum , Selenio , Selenio/análisis , Fagopyrum/química , Selenito de Sodio/análisis , Proyectos de Investigación , Hojas de la Planta/química , Grano Comestible
13.
Cancer Cell Int ; 22(1): 153, 2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35436935

RESUMEN

BACKGROUND: Growing evidence has indicated that tumor-associated macrophages (TAMs) promote tumor angiogenesis. However, the mechanisms underlying the pro-angiogenic switch of TAMs remains unclear. Here, we examined how exosomal miR-301a-3p secreted by esophageal squamous cell carcinoma (ESCC) cells triggers the pro-angiogenic switch of TAMs. METHODS: We quantified miR-301a-3p levels in ESCC tumors using qRT-PCR. Macrophage phenotypes were identified using flow cytometry and qRT-PCR. The pro-angiogenic ability of TAMs was measured using the CCK-8 assay, scratch assay, Transwell migration and invasion assay, and tube formation assay. The mechanism by which exosomal miR-301a-3p secreted by ESCC cells triggers the pro-angiogenic switch of TAMs was elucidated using western blots, qRT-PCR, and a dual-luciferase reporter assay. RESULTS: We observed anomalous miR-301a-3p overexpression in ESCC tumor tissues and cell lines. Then, we verified that ESCC-derived exosomes promoted angiogenesis by inducing macrophage polarization into M2 type, and exosomal miR-301a-3p secreted by ESCC cells was responsible for this effect. Finally, we discovered that exosomal miR-301a-3p promoted M2 macrophage polarization via the inhibition of PTEN and activation of the PI3K/AKT signaling pathway, subsequently promoting angiogenesis via the secretion of VEGFA and MMP9. CONCLUSION: The pro-angiogenic switch of TAMs is triggered by exosomal miR-301a-3p secreted from ESCC cells via the PTEN/PI3K/AKT signaling pathway. Although tumor angiogenesis can be regulated by a wide range of factors, exosomal miR-301a-3p could hold promise as a novel anti-angiogenesis target for ESCC treatment.

14.
Pathol Oncol Res ; 28: 1610140, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35241975

RESUMEN

In recent years, there has been significant progress in the diagnosis and treatment of esophageal cancer. However, owing to the lack of early diagnosis strategies and treatment targets, the prognosis of patients with esophageal cancer remains unsatisfactory. There is an urgent need to identify novel biomarkers and treatment targets for esophageal cancer. With the development of genomics, long-chain non-coding RNAs (LncRNAs), which were once considered transcriptional "noise," are being identified and characterized rapidly in large numbers. Recent research shows that LncRNAs are closely related to a series of steps in tumor development and play an important regulatory role in DNA replication, transcription, and post-transcriptional regulation. The abnormal expression of LncRNAs leads to tumor cell proliferation, migration, invasion, and treatment resistance. This review focuses on the latest progress in research on the abnormal expression and functional mechanisms of LncRNAs in esophageal cancer. Further, it discusses the potential applications of these findings towards achieving an early diagnosis, improving treatment efficacy, and evaluating the prognosis of esophageal cancer.


Asunto(s)
Neoplasias Esofágicas , ARN Largo no Codificante , Proliferación Celular/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Pronóstico , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
15.
Front Oncol ; 11: 739297, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34796109

RESUMEN

Esophageal squamous cell carcinoma (ESCC) has high morbidity and mortality rates owing to its ability to infiltrate and metastasize. Microvessels formed in early-stage ESCC promote metastasis. Phosphatase and tensin homolog (PTEN) mediates macrophage polarization, but its effect and mechanism on early ESCC angiogenesis are unclear. To explore the molecular mechanism underlying early ESCC metastasis through blood vessels, we investigated the relationship between PTEN/phosphoinositide 3-kinase (PI3K)/p-AKT protein levels, number of infiltrated macrophages, and angiogenesis in ESCC and ESCC-adjacent normal esophageal mucosa tissues from 49 patients. Additionally, PTEN was overexpressed or silenced in the esophageal cancer cell line EC9706, and its supernatant served as conditioning medium for M1 tumor-associated macrophages (TAMs). The culture medium of macrophages served as conditioning medium for esophageal tumor-associated vascular endothelial cells (TECs) to study the biological behavior of PTEN-plasmid, PTEN-siRNA, and control TECs. We found that M1 TAM infiltration in ESCC tissues was low, whereas M2 TAM infiltration was high. Microvessel density was large, PTEN was down-regulated, and the PI3K/AKT pathway was activated in ESCC specimens. These parameters significantly related to the depth of tumor invasion, lymph node metastasis, and pathological staging of ESCC. Silencing of PTEN in EC9706 cells significantly activated the PI3K/AKT signaling pathway in macrophages, promoting M1-to-M2 TAM polarization and enhancing TECs' ability to proliferate, migrate, invade, form tubes, and secrete vascular endothelial growth factor. We believe that PTEN silencing in esophageal cancer cells activates the PI3K/AKT signaling pathway in macrophages via the tumor microenvironment, induces M2 TAM polarization, and enhances the malignant behavior of TECs, thereby promoting ESCC angiogenesis. Our findings lay an empirical foundation for the development of novel diagnostic and therapeutic strategies for ESCC.

16.
Sci Rep ; 11(1): 18582, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34545171

RESUMEN

Hyperspectral remote sensing technology can be used to monitor the soil nutrient changes in a rapid, real-time, and non-destructive manner, which is of great significance to promote the development of precision agriculture. In this paper, 225 soil samples were studied. The effects of different water treatments on soil organic carbon (SOC) content, and the relationship between SOC content and spectral reflectance (350-2500 nm) were studied. 17 kinds of preprocessing algorithm were performed on the original spectral (R), and the five allocation ratios of calibration to verification sets were set. Finally, the model was constructed by partial least squares regression (PLSR). The results showed that the effects of water treatment on SOC content were different in different growth stages of winter wheat. Results of correlation analysis showed that the differential transformation can refine the spectral characteristics, and improve the correlation between SOC content and spectral reflectance. Results of model construction showed that the models constructed by second-order differential transformation were not good. But the ratio of standard deviation to the standard prediction error (RPD) values of the models were constructed by simple mathematical transformation (T0-T5) and first-order differential transformation (T6-T11) can reach more than 1.4. The simple mathematical transformation (T0-T2, T4-T5) and the first-order differential transformation (T6-T10) resulted in the highest RPD in mode 5 and mode 2, respectively. Among all the models, the model of T7 in mode 2 reach the highest accuracy with a RPD value of 1.9861. Therefore, it is necessary to consider the data preprocessing algorithm and allocation ratio in the process of constructing the hyperspectral monitoring model of SOC.

17.
Leuk Res ; 110: 106709, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34560409

RESUMEN

Tumor-associated macrophages (TAMs) are closely associated with poor multiple myeloma (MM) prognosis. Therefore, in-depth understanding of the mechanism by which TAM supports MM progression may lead to its effective treatment. We used the MM nude mouse subcutaneous xenograft model to evaluate the efficacy of the macrophage-depleting agent clodronate liposome (Clo) against MM and elucidate the mode of action of this therapy. At the same time, observe whether the elimination of TAM in vivo while silencing the expression of VEGFA has the same effect as in vitro experiments. We also used Clo to eliminate macrophages and reinjected M1 or M2 TAM through mouse tail veins to investigate the effects of various macrophage subtypes on MM xenograft tumor growth. We applied qRT-PCR, immunohistochemistry, and enzyme-linked immunosorbent assay to quantify VEGFA, CD31, and CD163 expression in tumor tissues and sera. Removal of TAMs from the tumor microenvironment impeded tumor growth. The combination of Clo plus VEGFA siRNA had a stronger inhibitory effect on tumor growth than Clo alone, and M2 and M1 macrophages promoted and inhibited tumor growth, respectively. Macrophage depletion combined with cytokine blocking is a promising MM treatment. Targeted M2 macrophage elimination together with cytokine block may be more effective at inhibiting MM growth than either treatment alone. The results of the present study lay an empirical foundation for the development of novel therapeutic strategies for MM.


Asunto(s)
Mieloma Múltiple/irrigación sanguínea , Mieloma Múltiple/patología , Neovascularización Patológica/patología , Microambiente Tumoral , Macrófagos Asociados a Tumores/inmunología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Apoptosis , Proliferación Celular , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mieloma Múltiple/inmunología , Neovascularización Patológica/inmunología , Células Tumorales Cultivadas , Factor A de Crecimiento Endotelial Vascular/genética , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Saudi J Biol Sci ; 28(9): 4852-4858, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34466058

RESUMEN

Nitrogen fertilizer is one of the key elements to increase the yield and significance of winter wheat. The experiment was established in the split zone design and was repeated three times. The nitrogen application level is set to 4 treatments, 75, 150, 225 and 300 kg ha-1 are arranged in the main plot, and different nitrogen application ratios are arranged in the sub-plots, respectively 5:5 (50%+50%) and 6: 4 (60%) + 40%). Nitrogen fertilizer was applied before sowing, jointing stage, flowering stage and filling stage. The experimental plot is 12 m2 (3 m × 4 m). The results showed that under the conditions of 225 kg/hm2 nitrogen application and 60%+40% nitrogen application rate, the yield of Jintai 182 was the highest compared with other treatment groups. With the increase of nitrogen application rate, the number of ears, grains per ear, thousand-grain weight and grain yield all increase first and then decrease. Each factor reached the highest 225 N kg / hm2, 417.17, 30.74, 40.96 g and 6182.11 kg / hm2. Compared with 75 kg/hm2 topdressing fertilizer, 225 kg/hm2 is a more suitable nitrogen fertilizer application rate for winter wheat. Within a reasonable range of nitrogen fertilizer application, there is a significant positive correlation between nitrogen content and winter wheat yield. By studying the amount of nitrogen fertilizer and a reasonable ratio of base fertilizer to topdressing, the utilization rate of nitrogen fertilizer can be maximized and excessive application of nitrogen fertilizer can be avoided.

19.
Bull Cancer ; 108(3): 323-332, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33423781

RESUMEN

Breast cancer is the most common cancer diagnosed in women worldwide. The current treatments for breast cancer, including surgery, radiotherapy and chemotherapy aim to destroy cancer cells, whereas they also cause damage to normal tissues and cells. Thus, an effective, safe and specific breast cancer treatment is urgently needed. The breast cancer-specific gene 1 (BCSG1) has been shown to be specific for the development of breast cancer and is a target for breast cancer diagnosis and treatment. It is expected to silence the expression of BCSG1 at the gene level for the purpose of treating breast cancer. The effect of RNAi technology on silencing target genes is comparable to gene knockout and has been widely used in animal experiments and plant genetic research. In the field of cancer therapy, numerous investigators have used siRNAs to specifically inhibit target genes, demonstrating that siRNAs can treat cancers at the molecular level. However, the delivery of siRNAs into humans needs to overcome multiple physiological barriers, limiting the clinical applications of siRNAs. This review focuses on the application of BCSG1 gene, siRNAs in cancer treatments, and the nanocarrier delivery system of siRNAs. The potential application and research value of BCSG1-specific siRNA in the treatment of breast cancer are discussed.


Asunto(s)
Neoplasias de la Mama/terapia , Portadores de Fármacos , Silenciador del Gen , Nanotecnología/métodos , Proteínas de Neoplasias/genética , ARN Interferente Pequeño/uso terapéutico , gamma-Sinucleína/genética , Neoplasias de la Mama/genética , Femenino , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Humanos
20.
PLoS One ; 16(1): e0245561, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33465150

RESUMEN

Precision point positioning (PPP) is widely used in maritime navigation and other scenarios because it does not require a reference station. In PPP, the satellite clock bias (SCB) cannot be eliminated by differential, thus leading to an increase in positioning error. The prediction accuracy of SCB has become one of the key factors restricting positioning accuracy. Although International GNSS Service (IGS) provides the ultra-rapid ephemeris prediction part (IGU-P), its quality and real-time performance can not meet the practical application. In order to improve the accuracy of PPP, this paper proposes to use the Prophet model to predict SCB. Specifically, SCB sequence is read from the observation part in the ultra-rapid ephemeris (IGU-O) released by IGS. Next, the SCB sequence between adjacent epochs are subtracted to obtain the corresponding SCB single difference sequence. Then using the Prophet model to predict SCB single difference sequence. Finally, the prediction result is substituted into the PPP positioning observation equation to obtain the positioning result. This paper uses the final ephemeris (IGF) published by IGS as a benchmark and compares the experimental results with IGU-P. For the selected four satellites, compared with the results of the IGU-P, the accuracy of SCB prediction of the model in this paper is improved by about 50.3%, 61.7%, 60.4%, and 48.8%. In terms of PPP positioning results, we use Real-time kinematic (RTK) measurements as a benchmark in this paper. Positioning accuracy has increased by 26%, 35%, and 19% in the N, E, and U directions, respectively. The results show that the Prophet model can improve the performance of PPP.


Asunto(s)
Modelos Teóricos , Nave Espacial , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA