Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
N Biotechnol ; 80: 12-20, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38176452

RESUMEN

Although several technologies have been developed to isolate cells of interest from a heterogenous sample, clogging and impaired cell viability limit such isolation. We have developed the Enrich TROVO system as a novel, nonfluidic technology to sort live cells. The TROVO system combines imaging-based cell selection and photo-crosslinking of (gelatin methacrylate) gelMA-hydrogel to capture cells. After capture, cells are released by enzymatic digestion of the hydrogel and then retrieved for downstream analysis or further cell culturing. The system can capture cells with a recovery rate of 48% while maintaining 90% viability. Moreover, TROVO can enrich rare cells 506-fold with 93% efficiency using single step isolation from a 1:104 cell mixture, and can also capture one target cell from 1 million cells, reaching an enrichment ratio of 9128. In addition, 100% purity and 49% recovery rate can be achieved by a following negative isolation process. Compared to existing technologies, the TROVO system is clog-resistant, highly biocompatible, and can process a wide range of sample sizes.


Asunto(s)
Gelatina , Hidrogeles , Separación Celular , Metacrilatos , Ingeniería de Tejidos
2.
Biotechniques ; 75(2): 56-64, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37551835

RESUMEN

Enriching target cell clones from diverse cell populations is vital for many life science applications. We have developed a novel method to rapidly and efficiently purify specific clonal cell populations from a larger, heterogeneous group using the Enrich TroVo system (Enrich Biosystems Inc., CT, USA). This system takes advantage of microfabrication and optical technologies by utilizing small hydrogel wells to separate desired cell populations and an innovative patching technique to selectively eliminate undesired cells. This method allows the isolation and growth of desired cells with minimal impact on their viability and proliferation. We successfully isolated and expanded clonal cell populations of desired cells using two model cells. Compared with fluorescence-activated cell sorting, Enrich TroVo system offers a promising alternative for isolating of sensitive, adherent cells, that is, patient-derived cells.


Asunto(s)
Citometría de Flujo , Humanos , Citometría de Flujo/métodos , Separación Celular/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA