Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 12(11)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34832712

RESUMEN

In this paper, a magnetically coupled electromagnetic energy harvester (MCEEH) is proposed for harvesting human body kinetic energy. The proposed MCEEH mainly consists of a pair of spring-connected magnets, coils, and a free-moving magnet. Specifically, the interaction force between the magnets is repulsive. The main feature of this structure is the use of a magnetic-spring structure to weaken the hardening response caused by the repulsive force. The magnetic coupling method enables the energy harvester system to harvest energy efficiently at low frequency. The MCEEH is experimentally investigated for improving energy harvesting efficiency. Under harmonic excitation with an acceleration of 0.5 g, the MCEEH reaches resonance frequency at 8.8 Hz and the maximum output power of the three coils are 5.2 mW, 2.8 mW, and 2.5 mW, respectively. In the case of hand-shaking excitation, the generator can obtain the maximum voltage of 0.6 V under the excitation acceleration of 0.2 g and the excitation frequency of 3.4 Hz. Additionally, a maximum instantaneous power can be obtained of about 26 mW from the human body's kinetic energy.

2.
Micromachines (Basel) ; 12(7)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34357234

RESUMEN

Based on the conventional structure of traveling wave ultrasonic motor, a rotary ultrasonic motor with double-sided staggered teeth was proposed. Both sides of the stator could be used to actuate the rotors to rotate and output torque. Moreover, the staggered teeth in the stator could be dedicated to accommodating the piezoelectric ceramic chips. Under the excitation of two alternating voltages with a 90° phase difference, a traveling wave could be generated in the ring-like stator. Then, a rotary motion could be realized by means of the friction between the rotors and the driving teeth of the stator. The finite element method was adopted to analyze the motion trajectories of the driving tips. Moreover, the experimental results showed that the load-free maximum speed and maximum output torque of the prototype were 99 rpm and 0.19 N·m at a voltage of 150 Vp with a frequency of 28.25 kHz.

3.
Micromachines (Basel) ; 12(8)2021 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-34442494

RESUMEN

This paper studies a novel enhanced energy-harvesting method to harvest water flow-induced vibration with a tandem arrangement of two piezoelectric energy harvesters (PEHs) in the direction of flowing water, through simulation modeling and experimental validation. A mathematical model is established by two individual-equivalent single-degree-of-freedom models, coupled with the hydrodynamic force obtained by computational fluid dynamics. Through the simulation analysis, the variation rules of vibration frequency, vibration amplitude, power generation and the distribution of flow field are obtained. And experimental tests are performed to verify the numerical calculation. The experimental and simulation results show that the upstream piezoelectric energy harvester (UPEH) is excited by the vortex-induced vibration, and the maximum value of performance is achieved when the UPEH and the vibration are resonant. As the vortex falls off from the UPEH, the downstream piezoelectric energy harvester (DPEH) generates a responsive beat frequency vibration. Energy-harvesting performance of the DPEH is better than that of the UPEH, especially at high speed flows. The maximum output power of the DPEH (371.7 µW) is 2.56 times of that of the UPEH (145.4 µW), at a specific spacing between the UPEN and the DPEH. Thereupon, the total output power of the two tandem piezoelectric energy harvester systems is significantly greater than that of the common single PEH, which provides a good foreground for further exploration of multiple piezoelectric energy harvesters system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA