Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Carbohydr Polym ; 345: 122546, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227091

RESUMEN

Herein, dexamethasone (DEX) nanocrystalline suspension (NS)-embedded hydrogel (NS-G) was constructed using a hydroxypropyl methylcellulose (HPMC) polymer to enhance cochlear delivery and attenuate hearing loss following intratympanic (IT) injection. Hydrophobic steroidal nanocrystals were prepared using a bead milling technique and incorporated into a polysaccharide hydrogel. The NS-G system with HPMC (average molecular weight, 86,000 g/mol; 15 mg/mL) was characterized as follows: rod-shaped drug crystalline; particle size <300 nm; and constant complex viscosity ≤1.17 Pa·s. Pulverization of the drug particles into submicron diameters enhanced drug dissolution, while the HPMC matrix increased the residence time in the middle ear cavity, exhibiting a controlled release profile. The IT NS-G system elicited markedly enhanced and prolonged drug delivery (> 9 h) to the cochlear tissue compared with that of DEX sodium phosphate (DEX-SP), a water-soluble prodrug. In mice with kanamycin- and furosemide-induced ototoxicity, NS-G markedly enhanced hearing preservation across all frequencies (8-32 kHz), as revealed by an auditory brainstem response test, compared with both saline and DEX-SP. Moreover, treatment with NS-G showed enhanced anti-inflammatory effects, as evidenced by decreased levels of inflammation-related cytokines. Therefore, the IT administration of DEX NS-loaded HPMC hydrogels is a promising strategy for treating hearing loss.


Asunto(s)
Cóclea , Dexametasona , Pérdida Auditiva , Hidrogeles , Derivados de la Hipromelosa , Inyección Intratimpánica , Nanopartículas , Dexametasona/química , Dexametasona/administración & dosificación , Animales , Derivados de la Hipromelosa/química , Hidrogeles/química , Nanopartículas/química , Ratones , Cóclea/efectos de los fármacos , Cóclea/patología , Pérdida Auditiva/tratamiento farmacológico , Pérdida Auditiva/inducido químicamente , Liberación de Fármacos , Masculino , Sistemas de Liberación de Medicamentos/métodos
2.
Bioeng Transl Med ; 9(4): e10649, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39036080

RESUMEN

In order to ensure prolonged pharmacokinetic profile along with local tolerability at the injection site, tricaprylin-based drug crystalline suspension (TS) was designed and its local distribution, pharmacokinetics, and inflammatory response, were evaluated with conventional aqueous suspension (AS). As model drug particles, entecavir 3-palmitate (EV-P), an ester lipidic prodrug for entecavir (EV), was employed. The EV-P-loaded TS was prepared by ultra-sonication method. Prepared TS and conventional AS exhibited comparable morphology (rod or rectangular), median diameter (2.7 and 2.6 µm), crystallinity (melting point of 160-165°C), and in vitro dissolution profile. However, in vivo performances of drug microparticles were markedly different, depending on delivery vehicle. At AS-injected site, drug aggregates of up to 500 µm were formed upon intramuscular injection, and were surrounded with inflammatory cells and fibroblastic bands. In contrast, no distinct particle aggregation and adjacent granulation was observed at TS-injected site, with >4 weeks remaining of the oily vehicle in micro-computed tomographic observation. Surprisingly, TS exhibited markedly alleviated local inflammation compared to AS, endowing markedly lessened necrosis, fibrosis thickness, inflammatory area, and macrophage infiltration. The higher initial systemic exposure was observed with TS compared to AS, but TS provided prolonged delivery of EV for 3 weeks. Therefore, we suggest that the novel TS system can be a promising tool in designing parenteral long-acting delivery, with improved local tolerability.

3.
Carbohydr Polym ; 338: 122197, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38763711

RESUMEN

Transdermal rotigotine (RTG) therapy is prescribed to manage Parkinson's disease (Neupro® patch). However, its use is suffered from application site reactions. Herein, drug nanocrystalline suspension (NS)-loaded hydrogel (NS-HG) employing polysaccharides simultaneously as suspending agent and hydrogel matrix was constructed for transdermal delivery, with alleviated skin irritation. RTG-loaded NS-HG was prepared using a bead-milling technique, employing sodium carboxylmethyl cellulose (Na.CMC) as nano-suspending agent (molecular weight 90,000 g/mol) and hydrogel matrix (700,000 g/mol), respectively. NS-HG was embodied as follows: drug loading: ≤100 mg/mL; shape: rectangular crystalline; crystal size: <286.7 nm; zeta potential: -61 mV; viscosity: <2.16 Pa·s; and dissolution rate: >90 % within 15 min. Nuclear magnetic resonance analysis revealed that the anionic polymers bind to RTG nanocrystals via charge interaction, affording uniform dispersion in the matrix. Rodent transdermal absorption of RTG from NS-HG was comparable to that from microemulsions, and proportional to drug loading. Moreover, NS-HG was skin-friendly; erythema and epidermal swelling were absent after repeated application. Further, NS-HG was chemically stable; >95 % of the drug was preserved up to 4 weeks under long term (25 °C/RH60%), accelerated (40 °C/RH75%), and stress (50 °C) storage conditions. Therefore, this novel cellulose derivative-based nanoformulation presents a promising approach for effective transdermal RTG delivery with improved tolerability.


Asunto(s)
Administración Cutánea , Carboximetilcelulosa de Sodio , Hidrogeles , Nanopartículas , Piel , Tetrahidronaftalenos , Tiofenos , Tiofenos/química , Tiofenos/administración & dosificación , Animales , Hidrogeles/química , Nanopartículas/química , Carboximetilcelulosa de Sodio/química , Tetrahidronaftalenos/química , Tetrahidronaftalenos/administración & dosificación , Piel/efectos de los fármacos , Piel/metabolismo , Masculino , Absorción Cutánea/efectos de los fármacos , Ratas , Ratones , Portadores de Fármacos/química , Ratas Sprague-Dawley , Liberación de Fármacos
4.
Pharmaceutics ; 16(2)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38399233

RESUMEN

A high-payload ascorbyl palmitate (AP) nanosuspension (NS) was designed to improve skin delivery following topical application. The AP-loaded NS systems were prepared using the bead-milling technique, and softly thickened into NS-loaded gel (NS-G) using hydrophilic polymers. The optimized NS-G system consisted of up to 75 mg/mL of AP, 0.5% w/v of polyoxyl-40 hydrogenated castor oil (Kolliphor® RH40) as the suspending agent, and 1.0% w/v of sodium carboxymethyl cellulose (Na.CMC 700 K) as the thickening agent, in citrate buffer (pH 4.5). The NS-G system was embodied as follows: long and flaky nanocrystals, 493.2 nm in size, -48.7 mV in zeta potential, and 2.3 cP of viscosity with a shear rate of 100 s-1. Both NS and NS-G provided rapid dissolution of the poorly water-soluble antioxidant, which was comparable to that of the microemulsion gel (ME-G) containing AP in solubilized form. In an ex vivo skin absorption study using the Franz diffusion cell mounted on porcine skin, NS-G exhibited faster absorption in skin, providing approximately 4, 3, and 1.4 times larger accumulation than that of ME-G at 3, 6, and 12 h, respectively. Therefore, the high-payload NS makes it a promising platform for skin delivery of the lipid derivative of ascorbic acid.

5.
Pharm Dev Technol ; 29(1): 62-73, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38190194

RESUMEN

Herein, we aimed to formulate a novel oral disintegrating tablet (ODT) of aripiprazole (ARP) capable of rapid disintegration using a direct compression technique. Different ODTs were fabricated with directly compressible excipients, and their disintegration time, wettability (water absorption ratio and wetting time), and mechanical properties (hardness and friability) were evaluated. The optimized ODT comprised F-Melt® type C, Prosolv® SMCC HD90, and Na croscarmellose (10 mg of ARP in a 130 mg tablet). The ODT with 3.1-5.2 kp hardness exhibited rapid disintegration (14.1-17.2 sec), along with appropriate mechanical strength (friability < 0.24%). In a bioequivalent study in Korean healthy subjects (randomized, single-dose, two-period crossover design, n = 37), the novel ODT offered the equivalent pharmacokinetic profile to that of a conventional immediate release tablet (Otsuka, Abilify®, Japan), despite different disintegration and dissolution profiles. The 90% confidence intervals of the geometric mean test to reference ratios considering the area-under-the-curve and maximum plasma drug concentrations were 1.0306-11051 and 0.9448-1.1063, respectively, satisfying FDA regulatory criteria for bioequivalence. The novel ART ODT was physicochemically stable under the accelerated storage condition (40 °C, RH75%) for 24 weeks. Therefore, the novel ARP-loaded ODT is expected to be an alternative to oral ARP therapy, providing improved patient adherence.


Asunto(s)
Aripiprazol , Humanos , Administración Oral , Solubilidad , Comprimidos/química , Equivalencia Terapéutica , Estudios Cruzados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA