Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
1.
NPJ Precis Oncol ; 8(1): 194, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39245753

RESUMEN

Regulated cell death (RCD) plays a crucial role in the immune microenvironment, development, and progression of hepatocellular carcinoma (HCC). However, reliable immune-related cell death signatures have not been explored. In this study, we collected 12 RCD modes (e.g., apoptosis, ferroptosis, and cuproptosis), including 1078 regulators, to identify immune-related cell death genes based on HCC immune subgroups. Using a developed competitive machine learning framework, nine genes were screened to construct the immune-related cell death index (IRCDI), which is available for online application. Multi-omics data, along with clinical features, were analyzed to explore the HCC malignant heterogeneity. To validate the efficacy of this model, more than 18 independent cohorts, including survival and diverse treatment cohorts and datasets, were utilized. These findings were further validated using in-house samples and molecular biological experiments. Overall, the IRCDI may have a wide application in individual therapeutic decision-making and improving outcomes for HCC patients.

2.
Plant Biotechnol J ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39229972

RESUMEN

Eukaryotic translation initiation factors (eIFs) are the primary targets for overcoming RNA virus resistance in plants. In a previous study, we mapped a BjeIF2Bß from Brassica juncea representing a new class of plant virus resistance genes associated with resistance to Turnip mosaic virus (TuMV). However, the mechanism underlying eIF2Bß-mediated virus resistance remains unclear. In this study, we discovered that the natural variation of BjeIF2Bß in the allopolyploid B. juncea was inherited from one of its ancestors, B. rapa. By editing of eIF2Bß, we were able to confer resistance to TuMV in B. juncea and in its sister species of B. napus. Additionally, we identified an N6-methyladenosine (m6A) demethylation factor, BjALKBH9B, for interaction with BjeIF2Bß, where BjALKBH9B co-localized with both BjeIF2Bß and TuMV. Furthermore, BjeIF2Bß recruits BjALKBH9B to modify the m6A status of TuMV viral coat protein RNA, which lacks the ALKB homologue in its genomic RNA, thereby affecting viral infection. Our findings have applications for improving virus resistance in the Brassicaceae family through natural variation or genome editing of the eIF2Bß. Moreover, we uncovered a non-canonical translational control of viral mRNA in the host plant.

3.
Front Pharmacol ; 15: 1447283, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39221139

RESUMEN

Background: Stephania tetrandra has been used for treating rheumatic diseases for thousands of years in rural areas of China. Several studies have found that tetrandrine and fangchinoline can inactivate the PI3K/Akt signaling pathway by reducing the expression and phosphorylation of AKT. However, the mechanism underlying the therapeutic actions of S. tetrandra on RA is not well known. Methods: In this study, we determined the molecular mechanism of the therapeutic effects of the multiple ingredients of S. tetrandra extract (STE) on collagen-induced arthritic (CIA) rats by integrating pharmacometabolomics, proteomics, and PTMomics. Results: In the multi-omics joint analysis, first, the expression signatures of proteins, PTMs, metabolites, and STE ingredients were profiled in CIA rats PBMCs that underwent STE treatment. Bioinformatics analysis were subsequently probed that STE mainly regulated tryptophan metabolism, inflammatory response, and cell adhesion pathways in CIA rats. The interrelated pathways were further constructed, and the findings revealed that STE attenuated the inflammatory response and proliferation of PBMCs in CIA rats by mediating the key targets of the PI3K/Akt pathway, including Hint1, ACP1, FGR, HSP90@157W + dioxidation, and Prkca@220N + 845.4540 Da. The rheumatic functions of Hint1 and ACP1 were further confirmed by applying a transcriptomic data of RA patients who clinically received abatacept therapy. Furthermore, a cross-ome correlation analysis was performed and major in vivo ingredients of STE, including coclaurine-N-glucuronide, Me,coclaurine-O-glc, N-gluA-schefferine, corydamine, corypamine, tetrandrine, and fangchiniline, were found to act on these targerts to inactivate the PI3K/Akt pathway. Conclusion: These results elucidated the molecular mechanism by which the ingredients of STE mediate the expression of the key targets in the PI3K/Akt pathway, leading to anti-rheumatic functions. The findings of this study provided new insights into the synergistic effect of STE against arthritis in rats.

4.
J Exp Clin Cancer Res ; 43(1): 237, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39164746

RESUMEN

BACKGROUND: Activator protein-1 (AP-1) represents a transcription factor family that has garnered growing attention for its extensive involvement in tumor biology. However, the roles of the AP-1 family in the evolution of lung cancer remain poorly characterized. FBJ Murine Osteosarcoma Viral Oncogene Homolog B (FOSB), a classic AP-1 family member, was previously reported to play bewilderingly two-polarized roles in non-small cell lung cancer (NSCLC) as an enigmatic double-edged sword, for which the reasons and significance warrant further elucidation. METHODS AND RESULTS: Based on the bioinformatics analysis of a large NSCLC cohort from the TCGA database, our current work found the well-known tumor suppressor gene TP53 served as a key code to decipher the two sides of FOSB - its expression indicated a positive prognosis in NSCLC patients harboring wild-type TP53 while a negative one in those harboring mutant TP53. By constructing a panel of syngeneically derived NSCLC cells expressing p53 in different statuses, the radically opposite prognostic effects of FOSB expression in NSCLC population were validated, with the TP53-R248Q mutation site emerging as particularly meaningful. Transcriptome sequencing showed that FOSB overexpression elicited diversifying transcriptomic landscapes across NSCLC cells with varying genetic backgrounds of TP53 and, combined with the validation by RT-qPCR, PREX1 (TP53-Null), IGFBP5 (TP53-WT), AKR1C3, and ALDH3A1 (TP53-R248Q) were respectively identified as p53-dependent transcriptional targets of FOSB. Subsequently, the heterogenous impacts of FOSB on the tumor biology in NSCLC cells via the above selective transcriptional targets were confirmed in vitro and in vivo. Mechanistic investigations revealed that wild-type or mutant p53 might guide FOSB to recognize and bind to distinct promoter sequences via protein-protein interactions to transcriptionally activate specific target genes, thereby creating disparate influences on the progression and prognosis in NSCLC. CONCLUSIONS: FOSB expression holds promise as a novel prognostic biomarker for NSCLC in combination with a given genetic background of TP53, and the unique interactions between FOSB and p53 may serve as underlying intervention targets for NSCLC.


Asunto(s)
Progresión de la Enfermedad , Neoplasias Pulmonares , Proteínas Proto-Oncogénicas c-fos , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Pronóstico , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas Proto-Oncogénicas c-fos/genética , Ratones , Animales , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Femenino , Masculino , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral
5.
Front Immunol ; 15: 1356414, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39114654

RESUMEN

Background: The gut microbiota significantly influences the onset and progression of juvenile idiopathic arthritis (JIA) and associated uveitis (JIAU); however, the causality remains unclear. This study aims to establish a causal link between gut microbiota and JIA or JIAU. Methods: Using publicly available genome-wide association studies (GAWS) summary data, we conducted a two-sample Mendelian randomisation (MR) analysis employing various methods, namely inverse variance weighted (IVW), simple mode, weighted mode, weighted median and MR-Egger regression methods, to assess the causal association between JIA or JIAU and gut microbiota. Sensitivity analyses, including Cochrane's Q test, MR-Egger intercept test, leave-one-out analysis and MR-PRESSO, were performed to evaluate the robustness of the MR results. Subsequently, reverse MR analysis was conducted to determine causality between gene-predicted gut microbiota abundance and JIA or JIAU. Results: The MR analysis revealed a causal association between gut microbiota abundance variations and JIA or JIAU risk. Specifically, the increased abundance of genus Ruminococcaceae UCG013 (OR: 0.055, 95%CI: 0.006-0.103, p = 0.026) and genus Ruminococcaceae UCG003 (ß: 0.06, 95%CI: 0.003-0.117, p = 0.041) correlated with an increased risk of JIA, while genus Lachnospiraceae UCG001 (OR: 0.833, 95%CI: 0.699~0.993, p = 0.042) was associated with a reduced risk of JIA, among others. Sensitivity analysis confirmed MR analysis robustness. Conclusions: This study provides substantial evidence supporting a causal association between genetically predicted gut microbiota and JIA or JIAU. It highlights the significant role of intestinal flora in JIA or JIAU development, suggesting their potential as novel biomarkers for diagnosis and prevention. These findings offer valuable insights to mitigate the impact of JIA or JIAU.


Asunto(s)
Artritis Juvenil , Microbioma Gastrointestinal , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Uveítis , Humanos , Microbioma Gastrointestinal/genética , Artritis Juvenil/microbiología , Artritis Juvenil/genética , Uveítis/microbiología , Uveítis/etiología , Uveítis/genética , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple
6.
Angew Chem Int Ed Engl ; 63(35): e202408414, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-38850273

RESUMEN

Transition metal oxides (TMOs) are promising cathode materials for aqueous zinc ion batteries (ZIBs), however, their performance is hindered by a substantial Hubbard gap, which limits electron transfer and battery cyclability. Addressing this, we introduce a heteroatom coordination approach, using triethanolamine to induce axial N coordination on Mn centers in MnO2, yielding N-coordinated MnO2 (TEAMO). This approach leverages the change of electronegativity disparity between Mn and ligands (O and N) to disrupt spin symmetry and augment spin polarization. This enhancement leads to the closure of the Hubbard gap, primarily driven by the intensified occupancy of the Mn eg orbitals. The resultant TEAMO exhibit a significant increase in storage capacity, reaching 351 mAh g-1 at 0.1 A g-1. Our findings suggest a viable strategy for optimizing the electronic structure of TMO cathodes, enhancing the potential of ZIBs in energy storage technology.

7.
Front Plant Sci ; 15: 1408602, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38867882

RESUMEN

Fruit length (FL) is an important economical trait that affects fruit yield and appearance. Pumpkin (Cucurbita moschata Duch) contains a wealth genetic variation in fruit length. However, the natural variation underlying differences in pumpkin fruit length remains unclear. In this study, we constructed a F2 segregate population using KG1 producing long fruit and MBF producing short fruit as parents to identify the candidate gene for fruit length. By bulked segregant analysis (BSA-seq) and Kompetitive Allele-Specific PCR (KASP) approach of fine mapping, we obtained a 50.77 kb candidate region on chromosome 14 associated with the fruit length. Then, based on sequence variation, gene expression and promoter activity analyses, we identified a candidate gene (CmoFL1) encoding E3 ubiquitin ligase in this region may account for the variation of fruit length. One SNP variation in promoter of CmoFL1 changed the GT1CONSENSUS, and DUAL-LUC assay revealed that this variation significantly affected the promoter activity of CmoFL1. RNA-seq analysis indicated that CmoFL1 might associated with the cell division process and negatively regulate fruit length. Collectively, our work identifies an important allelic affecting fruit length, and provides a target gene manipulating fruit length in future pumpkin breeding.

8.
Theor Appl Genet ; 137(5): 98, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38592431

RESUMEN

KEY MESSAGE: The ClLOG gene encoding a cytokinin riboside 5'-monophosphate phosphoribohydrolase determines trichome length in watermelon, which is associated with its promoter variations. Trichomes, which are differentiated from epidermal cells, are special accessory structures that cover the above-ground organs of plants and possibly contribute to biotic and abiotic stress resistance. Here, a bulked segregant analysis (BSA) of an F2 population with significant variations in trichome length was undertaken. A 1.84-Mb candidate region on chromosome 10 was associated with trichome length. Resequencing and fine-mapping analyses indicated that a 12-kb structural variation in the promoter of Cla97C10G203450 (ClLOG) led to a significant expression difference in this gene in watermelon lines with different trichome lengths. In addition, a virus-induced gene silencing analysis confirmed that ClLOG positively regulated trichome elongation. These findings provide new information and identify a potential target gene for controlling multicellular trichome elongation in watermelon.


Asunto(s)
Citocininas , Tricomas , Tricomas/genética , Glicósidos , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN
9.
Front Endocrinol (Lausanne) ; 15: 1348248, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38586450

RESUMEN

Background: The causal association between thyroid dysfunction (including hyperthyroidism and hypothyroidism) and sepsis is controversial in previous studies. Therefore, we used Mendelian randomization (MR) to explore the causal association between hyperthyroidism or hypothyroidism and the susceptibility to four distinct subtypes of sepsis (streptococcal sepsis, puerperal sepsis, asthma-associated pneumonia or sepsis, and other sepsis). Methods: In our research, we conducted two-sample Mendelian randomization (MR) analyses utilizing publicly available genome-wide association studies (GWAS) data from Sakaue et al. and the Finnish database to investigate the potential causal associations between hyperthyroidism, hypothyroidism, and each of the four distinct subtypes of sepsis, in addition to reverse MR analyses of the positive results to examine the existence of reverse causality. Results: Genetic hypothyroidism was causally related to the development of asthma-associated pneumonia or sepsis (ORIVW: 1.097, 95% CI: 1.024 to 1.174, P = 0.008); hypothyroidism was significantly associated with the development of other sepsis (ORIVW: 1.070, 95% CI: 1.028 to 1.115, P < 0.001). In addition, sensitivity analysis substantiated the robustness of these two MR findings, with no evidence of horizontal pleiotropy observed (P > 0.05). MR Egger regression analysis demonstrated no heterogeneity between instrumental variables (IVs). Inverse MR results confirmed no reverse causality between hypothyroidism and asthma-associated pneumonia or sepsis, or between hypothyroidism and other sepsis. The findings of this study also unveiled that there is no evidence of a causal link between hypothyroidism and the development of streptococcal sepsis or puerperal sepsis. Additionally, the research provided evidence indicating the absence of a causal relationship between hyperthyroidism and streptococcal sepsis, puerperal sepsis, asthma-associated pneumonia or sepsis, and other sepsis. Conclusions: This study identified a causal link between hypothyroidism and the occurrence of asthma-associated pneumonia or sepsis, and other sepsis, but not with the development of streptococcal sepsis and puerperal sepsis. Moreover, our findings did not reveal any causal association between hyperthyroidism and streptococcal sepsis, puerperal sepsis, asthma-associated pneumonia or sepsis, and other sepsis.


Asunto(s)
Asma , Hipertiroidismo , Hipotiroidismo , Neumonía , Sepsis , Humanos , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Sepsis/complicaciones , Sepsis/genética , Asma/complicaciones , Asma/genética
10.
BMC Plant Biol ; 24(1): 290, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627629

RESUMEN

BACKGROUND: Flesh firmness is a critical factor that influences fruit storability, shelf-life and consumer's preference as well. However, less is known about the key genetic factors that are associated with flesh firmness in fresh fruits like watermelon. RESULTS: In this study, through bulk segregant analysis (BSA-seq), we identified a quantitative trait locus (QTL) that influenced variations in flesh firmness among recombinant inbred lines (RIL) developed from cross between the Citrullus mucosospermus accession ZJU152 with hard-flesh and Citrullus lanatus accession ZJU163 with soft-flesh. Fine mapping and sequence variations analyses revealed that ethylene-responsive factor 1 (ClERF1) was the most likely candidate gene for watermelon flesh firmness. Furthermore, several variations existed in the promoter region between ClERF1 of two parents, and significantly higher expressions of ClERF1 were found in hard-flesh ZJU152 compared with soft-flesh ZJU163 at key developmental stages. DUAL-LUC and GUS assays suggested much stronger promoter activity in ZJU152 over ZJU163. In addition, the kompetitive allele-specific PCR (KASP) genotyping datasets of RIL populations and germplasm accessions further supported ClERF1 as a possible candidate gene for fruit flesh firmness variability and the hard-flesh genotype might only exist in wild species C. mucosospermus. Through yeast one-hybrid (Y1H) and dual luciferase assay, we found that ClERF1 could directly bind to the promoters of auxin-responsive protein (ClAux/IAA) and exostosin family protein (ClEXT) and positively regulated their expressions influencing fruit ripening and cell wall biosynthesis. CONCLUSIONS: Our results indicate that ClERF1 encoding an ethylene-responsive factor 1 is associated with flesh firmness in watermelon and provide mechanistic insight into the regulation of flesh firmness, and the ClERF1 gene is potentially applicable to the molecular improvement of fruit-flesh firmness by design breeding.


Asunto(s)
Citrullus , Citrullus/genética , Citrullus/metabolismo , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética , Frutas/genética , Etilenos/metabolismo , Regiones Promotoras Genéticas/genética
11.
Microbiol Spectr ; 12(4): e0188523, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38488366

RESUMEN

Capsular polysaccharides (CPS) in Streptococcus pneumoniae are pivotal for bacterial virulence and present extensive diversity. While oral streptococci show pronounced antigenicity toward pneumococcal capsule-specific sera, insights into evolution of capsule diversity remain limited. This study reports a pneumococcal CPS-like genetic locus in Streptococcus parasanguinis, a predominant oral Streptococcus. The discovered locus comprises 15 genes, mirroring high similarity to those from the Wzy-dependent CPS locus of S. pneumoniae. Notably, S. parasanguinis elicited a reaction with pneumococcal 19B antiserum. Through nuclear magnetic resonance analysis, we ascertained that its CPS structure matches the chemical composition of the pneumococcal 19B capsule. By introducing the glucosyltransferase gene cps19cS from a pneumococcal serotype 19C, we successfully transformed S. parasanguinis antigenicity from 19B to 19C. Furthermore, substituting serotype-specific genes, cpsI and cpsJ, with their counterparts from pneumococcal serotype 19A and 19F enabled S. parasanguinis to generate 19A- and 19F-specific CPS, respectively. These findings underscore that S. parasanguinis harbors a versatile 19B-like CPS adaptable to other serotypes. Remarkably, after deleting the locus's initial gene, cpsE, responsible for sugar transfer, we noted halted CPS production, elongated bacterial chains, and diminished biofilm formation. A similar phenotype emerged with the removal of the distinct gene cpsZ, which encodes a putative autolysin. These data highlight the importance of S. parasanguinis CPS for biofilm formation and propose a potential shared ancestry of its CPS locus with S. pneumoniae. IMPORTANCE: Diverse capsules from Streptococcus pneumoniae are vital for bacterial virulence and pathogenesis. Oral streptococci show strong responses to a wide range of pneumococcal capsule-specific sera. Yet, the evolution of this capsule diversity in relation to microbe-host interactions remains underexplored. Our research delves into the connection between commensal oral streptococcal and pneumococcal capsules, highlighting the potential for gene transfer and evolution of various capsule types. Understanding the genetic and evolutionary factors that drive capsule diversity in S. pneumoniae and its related oral species is essential for the development of effective pneumococcal vaccines. The present findings provide fresh perspectives on the cross-reactivity between commensal streptococci and S. pneumoniae, its influence on bacteria-host interactions, and the development of new strategies to manage and prevent pneumococcal illnesses by targeting and modulating commensal streptococci.


Asunto(s)
Streptococcus pneumoniae , Streptococcus , Streptococcus pneumoniae/genética , Streptococcus/genética , Polisacáridos , Serogrupo , Vacunas Neumococicas , Ingeniería Genética , Cápsulas Bacterianas , Polisacáridos Bacterianos
12.
Pharmacol Res ; 203: 107149, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518830

RESUMEN

Neuronal health is closely linked to the homeostasis of intracellular organelles, and organelle dysfunction affects the pathological progression of neurological diseases. In contrast to isolated cellular compartments, a growing number of studies have found that organelles are largely interdependent structures capable of communicating through membrane contact sites (MCSs). MCSs have been identified as key pathways mediating inter-organelle communication crosstalk in neurons, and their alterations have been linked to neurological disease pathology. The endoplasmic reticulum (ER) is a membrane-bound organelle capable of forming an extensive network of pools and tubules with important physiological functions within neurons. There are multiple MCSs between the ER and other organelles and the plasma membrane (PM), which regulate a variety of cellular processes. In this review, we focus on ER-organelle MCSs and their role in a variety of neurological diseases. We compared the biological effects between different tethering proteins and the effects of their respective disease counterparts. We also discuss how altered ER-organelle contacts may affect disease pathogenesis. Therefore, understanding the molecular mechanisms of ER-organelle MCSs in neuronal homeostasis will lay the foundation for the development of new therapies targeting ER-organelle contacts.


Asunto(s)
Retículo Endoplásmico , Enfermedades del Sistema Nervioso , Transducción de Señal , Humanos , Retículo Endoplásmico/metabolismo , Animales , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Neuronas/metabolismo , Orgánulos/metabolismo
13.
Sci Total Environ ; 923: 171349, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38438030

RESUMEN

Benzo(a)pyrene as a pervasive environmental contaminant is characterized by its substantial genotoxicity, and epidemiological investigations have established a correlation between benzo(a)pyrene exposure and the susceptibility to human lung cancer. Notably, much research has focused on the link between epigenetic alterations and lung cancer induced by chemicals, although circRNAs are also emerging as relevant contributors to the carcinogenic process of benzo(a)pyrene. In this study, we identified circ_0067716 as being significantly upregulated in response to stress injury and downregulated during malignant transformation induced by benzo(a)pyrene-7,8-diol-9,10-epoxide (BPDE) in human bronchial epithelial cells. The observed differential expression of circ_0067716 in cells treated with BPDE for varying durations suggests a strong correlation between this circRNA and BPDE exposure. The tissue samples of lung cancer patients also suggest that a lower circ_0067716 expression is associated with BPDE-DNA adduct levels. Remarkably, we demonstrate that EIF4A3, located in the nucleus, interacts with the flanking sequences of circ_0067716 and inhibits its biogenesis. Conversely, circ_0067716 is capable of sequestering EIF4A3 in the cytoplasm, thereby preventing its translocation into the nucleus. EIF4A3 and circ_0067716 can form a double-negative feedback loop that could be affected by BPDE. During the initial phase of BPDE exposure, the expression of circ_0067716 was increased in response to stress injury, resulting in cell apoptosis through the involvement of miR-324-5p/DRAM1/BAX axis. Subsequently, as cellular adaptation progressed, long-term induction due to BPDE exposure led to an elevated EIF4A3 and a reduced circ_0067716 expression, which facilitated the proliferation of cells by stabilizing the PI3K/AKT pathway. Thus, our current study describes the effects of circ_0067716 on the genotoxicity and carcinogenesis induced by benzo(a)pyrene and puts forwards to the possible regulatory mechanism on the occurrence of smoking-related lung cancer, providing a unique insight based on epigenetics.


Asunto(s)
Neoplasias Pulmonares , MicroARNs , Humanos , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/metabolismo , Benzo(a)pireno/metabolismo , Transformación Celular Neoplásica/inducido químicamente , Transformación Celular Neoplásica/metabolismo , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/farmacología , Células Epiteliales , Factor 4A Eucariótico de Iniciación/metabolismo , Factor 4A Eucariótico de Iniciación/farmacología , Retroalimentación , Neoplasias Pulmonares/patología , MicroARNs/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo
14.
Chemosphere ; 352: 141508, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38387658

RESUMEN

Recycled PET (rPET) is gaining popularity for use in the production of new food contact materials (FCMs) under the context of circular economy. However, the limited information on contaminants in rPET from China and concerns about their potential risk are major obstacles to their use in FCM in China. Fifty-five non-volatile compounds were tentatively identified in 126 batches of hot-washed rPET flakes aimed for food packaging applications in China. Although the 55 substances are not necessarily migratable and may not end up in the contacting media, their presence indicates a need for proper management and control across the value chain. For this reason, the 55 substances prioritized on the basis of level of concerns and in-silico genotoxicity profiler. Among them, dimethoxyethyl phthalate, dibutyl phthalate, bis(2-ethylhexyl) phthalate were classified as level V substances, and Michler's ketone and 4-nitrophenol were both categorized as level V substances and had the genotoxic structure alert, while 2,4,5-trimethylaniline was specified with genotoxic structure alert. The above substances have high priority and may pose a potential risk to human health, therefore special attention should be paid to their migration from rPET. Aside from providing valuable information on non-volatile contaminants present in hot-washed rPET flakes coming from China, this article proposed a prioritization workflow that can be of great help to identify priority substances deserving special attention across the value chain.


Asunto(s)
Dibutil Ftalato , Contaminación de Alimentos , Humanos , China , Dibutil Ftalato/análisis , Contaminación de Alimentos/análisis , Reciclaje
15.
Eur J Med Chem ; 267: 116203, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38342014

RESUMEN

BACKGROUND: Quercetin is widely distributed in nature and abundant in the human diet, which exhibits diverse biological activities and potential medical benefits. However, there remains a lack of comprehensive understanding about its cellular targets, impeding its in-depth mechanistic studies and clinical applications. PURPOSE: This study aimed to profile protein targets of quercetin at the proteome level. METHODS: A label-free CETSA-MS proteomics technique was employed for target enrichment and identification. The R package Inflect was used for melting curve fitting and target selection. D3Pocket and LiBiSco tools were used for binding pocket prediction and binding pocket analysis. Western blotting, molecular docking, site-directed mutagenesis and pull-down assays were used for target verification and validation. RESULTS: We curated a library of direct binding targets of quercetin in cells. This library comprises 37 proteins that show increased thermal stability upon quercetin binding and 33 proteins that display decreased thermal stability. Through Western blotting, molecular docking, site-directed mutagenesis and pull-down assays, we validated CBR1 and GSK3A from the stabilized protein group and MAPK1 from the destabilized group as direct binding targets of quercetin. Moreover, we characterized the shared chemical properties of the binding pockets of quercetin with targets. CONCLUSION: Our findings deepen our understanding of the proteins pivotal to the bioactivity of quercetin and lay the groundwork for further exploration into its mechanisms of action and potential clinical applications.


Asunto(s)
Proteoma , Quercetina , Humanos , Quercetina/farmacología , Quercetina/química , Simulación del Acoplamiento Molecular , Proteoma/metabolismo , Espectrometría de Masas
16.
Plant Biotechnol J ; 22(5): 1325-1334, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38213067

RESUMEN

Cytoplasmic male sterility (CMS), encoded by the mitochondrial open reading frames (ORFs), has long been used to economically produce crop hybrids. However, the utilization of CMS also hinders the exploitation of sterility and fertility variation in the absence of a restorer line, which in turn narrows the genetic background and reduces biodiversity. Here, we used a mitochondrial targeted transcription activator-like effector nuclease (mitoTALENs) to knock out ORF138 from the Ogura CMS broccoli hybrid. The knockout was confirmed by the amplification and re-sequencing read mapping to the mitochondrial genome. As a result, knockout of ORF138 restored the fertility of the CMS hybrid, and simultaneously manifested a cold-sensitive male sterility. ORF138 depletion is stably inherited to the next generation, allowing for direct use in the breeding process. In addition, we proposed a highly reliable and cost-effective toolkit to accelerate the life cycle of fertile lines from CMS-derived broccoli hybrids. By applying the k-mean clustering and interaction network analysis, we identified the central gene networks involved in the fertility restoration and cold-sensitive male sterility. Our study enables mitochondrial genome editing via mitoTALENs in Brassicaceae vegetable crops and provides evidence that the sex production machinery and its temperature-responsive ability are regulated by the mitochondria.


Asunto(s)
Brassica , Infertilidad Masculina , Masculino , Humanos , Brassica/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción , Fitomejoramiento , Mitocondrias/genética , Fertilidad/genética , Infertilidad Vegetal/genética
17.
Pediatr Rheumatol Online J ; 22(1): 4, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166957

RESUMEN

A rare case of coronary artery involvement in a child with Systemic Juvenile Idiopathic Arthritis (sJIA) complicated by Macrophage Activation Syndrome (MAS) is reported. The patient initially received an inaccurate diagnosis of Kawasaki Disease, sepsis, and mycoplasma infection and showed no improvement after Intravenous Immune Globulin (IVIG) treatment. Upon admission, symptoms included diffuse red rash, swelling of the limbs, lymph node enlargement, and hepatosplenomegaly. Post investigations, a diagnosis of sJIA and MAS was confirmed, and treatment involved a combination of hormones (methylprednisolone) and immunosuppressive drugs (methotrexate). The revealed widened coronary artery diameter was managed with a disease-specific treatment plan and prophylactic plus low-dose aspirin anti-coagulation therapy. Under this management, MAS was well controlled, and follow-ups showed normalization of the child's coronary artery structure and function. This case and the associated literature review underscore the importance of early recognition, diagnosis, treatment, and long-term monitoring for children presenting with sJIA and MAS complicated by coronary artery involvement.


Asunto(s)
Artritis Juvenil , Síndrome de Activación Macrofágica , Niño , Humanos , Artritis Juvenil/complicaciones , Artritis Juvenil/diagnóstico , Artritis Juvenil/tratamiento farmacológico , Síndrome de Activación Macrofágica/diagnóstico , Síndrome de Activación Macrofágica/etiología , Síndrome de Activación Macrofágica/tratamiento farmacológico , Vasos Coronarios/diagnóstico por imagen , Inmunosupresores/uso terapéutico , Metotrexato/uso terapéutico
18.
Sheng Wu Gong Cheng Xue Bao ; 40(1): 53-62, 2024 Jan 25.
Artículo en Chino | MEDLINE | ID: mdl-38258631

RESUMEN

Abiotic stresses substantially affect the growth and development of plants. Plants have evolved multiple strategies to cope with the environmental stresses, among which transcription factors play an important role in regulating the tolerance to abiotic stresses. Basic leucine zipper transcription factors (bZIP) are one of the largest gene families. The stability and activity of bZIP transcription factors could be regulated by different post-translational modifications (PTMs) in response to various intracellular or extracellular stresses. This paper introduces the structural feature and classification of bZIP transcription factors, followed by summarizing the PTMs of bZIP transcription factors, such as phosphorylation, ubiquitination and small ubiquitin-like modifier (SUMO) modification, in response to abiotic stresses. In addition, future perspectives were prospected, which may facilitate cultivating excellent stress-resistant crop varieties by regulating the PTMs of bZIP transcription factors.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico , Procesamiento Proteico-Postraduccional , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Fosforilación , Factores de Transcripción/genética , Estrés Fisiológico/genética
19.
Ergonomics ; 67(4): 515-525, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37365918

RESUMEN

To investigate whether high cognitive task load (CTL) for aircraft pilots can be identified by analysing heart-rate variability, electrocardiograms were recorded while cadet pilots (n = 68) performed the plane tracking, anti-gravity pedalling, and reaction tasks during simulated flight missions. Data for standard electrocardiogram parameters were extracted from the R-R-interval series. In the research phase, low frequency power (LF), high frequency power (HF), normalised HF, and LF/HF differed significantly between high and low CTL conditions (p < .05 for all). A principal component analysis identified three components contributing 90.62% of cumulative heart-rate variance. These principal components were incorporated into a composite index. Validation in a separate group of cadet pilots (n = 139) under similar conditions showed that the index value significantly increased with increasing CTL (p < .05). The heart-rate variability index can be used to objectively identify high CTL flight conditions.Practitioner summary: We used principal component analysis of electrocardiogram data to construct a composite index for identifying high cognitive task load in pilots during simulated flight. We validated the index in a separate group of pilots under similar conditions. The index can be used to improve cadet training and flight safety.Abbreviations: ANOVA: a one-way analysis of variance; AP: anti-gravity pedaling task; CTL: cognitive task load; ECG: electrocardiograms; HR: heart rate; HRV: heart-rate variability; HRVI: heart-rate variability index; PT: plane-tracking task; RMSSD: root-mean square of differences between consecutive R-R intervals; RT: reaction task; SDNN: standard deviation of R-R intervals; HF: high frequency power; HFnu: normalized HF; LF: low frequency power; LFnu: normalized LF; PCA: principal component analysis.


Asunto(s)
Cognición , Electrocardiografía , Humanos , Frecuencia Cardíaca/fisiología , Análisis de Componente Principal
20.
Nat Prod Res ; 38(10): 1727-1738, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37328937

RESUMEN

Six amides, including a new N-alkylamide (1), four known N-alkylamides (2-5) and one nicotinamide (6) were isolated from Litsea cubeba (Lour.) Pers., which is a pioneer herb traditionally utilized in medicine. Their structures were elucidated on the basis of 1D and 2D NMR experiments and by comparison of their spectroscopic and physical data with the literature values. Cubebamide (1) is a new cinnamoyltyraminealkylamide and possessed obvious anti-inflammatory activity against NO production with IC50 values of 18.45 µM. Further in-depth pharmacophore-based virtual screening and molecular docking were carried out to reveal the binding mode of the active compound inside the 5-LOX enzyme. The results indicate that L. cubeba, and the isolated amides might be useful in the development of lead compounds for the prevention of inflammatory diseases.


Asunto(s)
Litsea , Litsea/química , Simulación del Acoplamiento Molecular , Antiinflamatorios , Amidas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA