Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Nanomicro Lett ; 16(1): 233, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954272

RESUMEN

The rapid development of organic electrochemical transistors (OECTs) has ushered in a new era in organic electronics, distinguishing itself through its application in a variety of domains, from high-speed logic circuits to sensitive biosensors, and neuromorphic devices like artificial synapses and organic electrochemical random-access memories. Despite recent strides in enhancing OECT performance, driven by the demand for superior transient response capabilities, a comprehensive understanding of the complex interplay between charge and ion transport, alongside electron-ion interactions, as well as the optimization strategies, remains elusive. This review aims to bridge this gap by providing a systematic overview on the fundamental working principles of OECT transient responses, emphasizing advancements in device physics and optimization approaches. We review the critical aspect of transient ion dynamics in both volatile and non-volatile applications, as well as the impact of materials, morphology, device structure strategies on optimizing transient responses. This paper not only offers a detailed overview of the current state of the art, but also identifies promising avenues for future research, aiming to drive future performance advancements in diversified applications.

2.
ACS Appl Mater Interfaces ; 16(26): 34125-34134, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38888298

RESUMEN

Bilayer hydrogels, endowed with multiresponsive and switchable color-changing properties, have garnered significant attention for bioinspired artificial intelligent materials. However, the design and fabrication of such hydrogels that can fully mimic the adaptation of the live organism, i.e., simultaneous changes in shape, fluorescent, and/or visible color, still remain significant challenges. Herein, a multiresponsive (e.g., temperature, salt, and pH) and multiadaptive (shape, fluorescent color, and visible color changes) hydrogel was fabricated by employing monomers featuring pH-responsive fluorescence 4-(2-(4-(dimethylamino) phenyl)-1-isocyanovinyl) phenol (DP) and switchable color-changing 4-(2-sulfethyl) -1-(4-vinylbenzyl) pyridinium betaine (VPES). The bilayer hydrogel comprises a temperature- and pH-responsive gel layer, poly(N-isopropylacrylamide-co-2-(dimethylamino) ethyl methacrylate), along with a pH-, temperature-, and salt-responsive gel layer, poly(acrylamide-co-2-(dimethylamino)ethyl methacrylate-co-VPES)@DP. Due to the opposite swelling/shrinking behavior between the two layers, the prepared hydrogel exhibits shape changes in response to thermal, salt, and pH stimuli, along with switchable fluorescent color and visible color change that originate from DP and polyVPES, respectively. Apart from multiresponsive behavior, this hydrogel also shows an excellent antifatigue property and high sensitivity, which makes it hold significant potential in many applications. We anticipate that this strategy to realize multiresponsive capability in this work can also inspire the design of the biomimetic smart materials.

3.
Huan Jing Ke Xue ; 45(6): 3746-3755, 2024 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-38897794

RESUMEN

Xi'an is the political, economic, and cultural center of northwest China with a developed industry. Air pollution incidents have brought great challenges to the high-quality development of the social economy. It is vital to study air pollution characteristics and clarify their impact on human health. In this study, we first analyzed the spatiotemporal variations in air pollutants in the study region from 2015 to 2021. Then, the air quality index (AQI), aggregate air quality index (AAQI), and health risk-based air quality index (HAQI) were used to assess health risks. Based on these, the AirQ2.2.3 model was used to quantify health effects. The results showed that the major pollutants were PM10, PM2.5, and O3. The main pollution characteristics of the study area were terrain characteristics and the mixed pollution of anthropogenic emissions. Compared to that of AQI, AAQI and HAQI showed better classification performance for pollution levels. HAQI revealed that approximately 80 % of the population was exposed to unhealthy air throughout the year in the study region. People were most exposed to unhealthy air in winter, followed by autumn and spring, and the least in summer. The AirQ2.2.3 model quantified the total mortality proportions attributable to PM2.5, PM10, SO2, CO, NO2, and O3, which were 0.99 %, 2.04 %, 0.41 %, 1.72 %, 8.76 %, and 3.67 %, respectively. The attributable proportion of mortality of the respiratory system and cardiovascular diseases was consistent with the change rule of total mortality.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Material Particulado , Análisis Espacio-Temporal , China , Contaminantes Atmosféricos/análisis , Humanos , Contaminación del Aire/análisis , Material Particulado/análisis , Exposición a Riesgos Ambientales , Ciudades , Ozono/análisis , Estaciones del Año , Medición de Riesgo
4.
Small ; : e2402529, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767079

RESUMEN

Unlocking CO2 capture potential remains a complex and challenging endeavor. Here, a blueprint is crafted for optimizing materials through CO2 capture and developing a synergistic hybridization strategy that involves synthesizing CO2-responsive hydrogels by integrating polymeric networks interpenetrated with polyethyleneimine (PEI) chains and inorganic CaCl2. Diverging from conventional CO2 absorbents, which typically serve a singular function in CO2 capture, these hybrid PEAC hydrogels additionally harness its presence to tune their optical and mechanical properties once interacting with CO2. Such synergistic functions entail two significant steps: (i) rapid CO2-fixing through PEI chains to generate abundant carbamic acid and carbamate species and (ii) mineralization via CaCl2 to induce the formation of CaCO3 micro-crystals within the hydrogel matrix. Due to the reversible bonding, the PEAC hydrogels enable the decoupling of CO2 through an acid fumigation treatment or a heating process, achieving dynamic CO2 capture-release cycles up to 8 times. Furthermore, the polyethyleneimine-acrylamide-calcium chloride (PEAC) hydrogel exhibits varying antibacterial attributes and high interfacial adhesive strength, which can be modulated by fine-tuning the compositions of PEI and CaCl2. This versatility underscores the promising potential of PEAC hydrogels, which not only unlocks CO2 capture capabilities but also offers opportunities in diverse biological and biomedical applications.

5.
Front Oncol ; 14: 1381894, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38764576

RESUMEN

Arachidonic acid (AA) is a crucial polyunsaturated fatty acid in the human body, metabolized through the pathways of COX, LOX, and cytochrome P450 oxidase to generate various metabolites. Recent studies have indicated that AA and its metabolites play significant regulatory roles in the onset and progression of ovarian cancer. This article examines the recent research advancements on the correlation between AA metabolites and ovarian cancer, both domestically and internationally, suggesting their potential use as biological markers for early diagnosis, targeted therapy, and prognosis monitoring.

6.
J Am Chem Soc ; 146(10): 7052-7062, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38427585

RESUMEN

Functional DNAs are valuable molecular tools in chemical biology and analytical chemistry but suffer from low activities due to their limited chemical functionalities. Here, we present a chemoenzymatic method for site-specific installation of diverse functional groups on DNA, and showcase the application of this method to enhance the catalytic activity of a DNA catalyst. Through chemoenzymatic introduction of distinct chemical groups, such as hydroxyl, carboxyl, and benzyl, at specific positions, we achieve significant enhancements in the catalytic activity of the RNA-cleaving deoxyribozyme 10-23. A single carboxyl modification results in a 100-fold increase, while dual modifications (carboxyl and benzyl) yield an approximately 700-fold increase in activity when an RNA cleavage reaction is catalyzed on a DNA-RNA chimeric substrate. The resulting dually modified DNA catalyst, CaBn, exhibits a kobs of 3.76 min-1 in the presence of 1 mM Mg2+ and can be employed for fluorescent imaging of intracellular magnesium ions. Molecular dynamics simulations reveal the superior capability of CaBn to recruit magnesium ions to metal-ion-binding site 2 and adopt a catalytically competent conformation. Our work provides a broadly accessible strategy for DNA functionalization with diverse chemical modifications, and CaBn offers a highly active DNA catalyst with immense potential in chemistry and biotechnology.


Asunto(s)
ADN Catalítico , ARN Catalítico , Secuencia de Bases , Magnesio , ADN Catalítico/química , ADN , ARN/química , Iones , Conformación de Ácido Nucleico , Catálisis , ARN Catalítico/metabolismo
7.
Biomed Pharmacother ; 174: 116506, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554525

RESUMEN

Combination therapy has become the most important treatment for advanced non-small cell lung cancer (NSCLC), which can significantly improve the prognosis of patients. However, poor targeting and adverse reactions limited its clinical application. Here, we constructed an AS1411 aptamer-programmed cell death ligand-1 (PD-L1) siRNA chimera/polyethylenimine/glutamine/ß-cyclodextrin/doxorubicin (Chimera/ PEI/Gln/ß-CD/DOX) nanoparticle for the combination therapy (chemotherapy combined with immunotherapy). Scanning electron microscopy showed that PEI/Gln/ß-CD/DOX nanoparticle was conical, with a diameter of about 250-500 nm. AS1411 aptamer-PD-L1 siRNA chimera can effectively bind NSCLC cells and inhibit PD-L1 expression, further activating T cells and CD8+T cells. Glutamine modification effectively promoted the doxorubicin uptake by cancer cells and induced their apoptosis. Animal experiments showed that our nanoparticles effectively treated the transplanted tumor, and the adverse reactions were reduced. Compared with the Aptamer/ß-CD/DOX group, the volume and ki-67 index of transplanted tumors in the Chimera/ß-CD/DOX group were significantly decreased, while the apoptosis ratio was increased. Immunohistochemical results showed that Compared with the Aptamer/ß-CD/DOX group, the number of T cells and CD8+T cells in the Chimera/ß-CD/DOX group was increased by 1.34 and 1.41 times. Glutamine modification enhanced the chemotherapeutic efficacy and anti-tumor immune response in vivo. Our study provided a new method for the combination therapy of lung squamous cell carcinoma.


Asunto(s)
Aptámeros de Nucleótidos , Doxorrubicina , Glutamina , Neoplasias Pulmonares , Nanopartículas , ARN Interferente Pequeño , beta-Ciclodextrinas , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Aptámeros de Nucleótidos/farmacología , Animales , Humanos , beta-Ciclodextrinas/química , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/farmacología , Nanopartículas/química , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Línea Celular Tumoral , Ratones Desnudos , Ratones Endogámicos BALB C , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , Ratones , Terapia Combinada , Apoptosis/efectos de los fármacos , Antígeno B7-H1/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética
8.
Int J Food Microbiol ; 412: 110572, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38237416

RESUMEN

The monophasic variant of Salmonella enterica serovar Typhimurium with the antigenic formula 1,4,[5],12:i:- is one of the most common pathogenic bacteria causing global food-borne outbreaks. However, the research on molecular characteristics and evolution of monophasic S. typhimurium in China is still lacking. In the current study, 59 monophasic S. typhimurium strains were isolated from food animals and food products in South China between 2011 and 2018. A total of 87.5 % of monophasic S. typhimurium isolates were grouped into one independent clade with other monophasic S. typhimurium strains in China distinct from other countries by phylogenomic analysis. These isolates possess variable genotypes, including multiple ARGs on plasmid IncHI2, diverse evolutions at the fljAB locus, and virulence factors. Our results suggest that the monophasic S. typhimurium isolates currently circulating in China might be an independent epidemic subtype.


Asunto(s)
Infecciones por Salmonella , Animales , Infecciones por Salmonella/microbiología , Salmonella typhimurium/genética , Serogrupo , Plásmidos , Genotipo , Antibacterianos
10.
Food Chem X ; 20: 100951, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38144833

RESUMEN

Yu jiangsuan (YJS) is a unique traditional fermented condiment in China. Physicochemical, bacterial communities, and non-volatile properties were examined in inoculation Autochthonous Weissella cibaria and Lactobacillus plantarum. The results indicated that inoculation samples did well in shortening fermentation time; amino acid nitrogen (AN) and TCA-soluble peptide contents of fermented YJS were 10.8% and 17.4% higher than those of naturally fermented YJS, respectively. However, its total volatile base nitrogen (TVB-N), thiobarbituric acid (TBARS), and nitrite were only 74.3%, 87.2% and 83.6% of those of naturally fermented YJS. In addition, the dominant bacterial genera were Lactobacillus, Weissella and Pectobacterium, whose contributions were 41.2%, 20.3% and 5.5%, respectively. Moreover, 26 significantly differential metabolites were identified, and involved in 10 metabolic pathways. The decomposition of substrates and the formation of differential metabolites in YJS were primarily centered on the TCA cycle and the metabolism of carbohydrates. Therefore, this study is conducive to discovering the bacterial community structure and metabolite composition of probiotic inoculated YJS fermentation, as well as the potential value of core functional bacteria genera in controlling YJS production in industry.

11.
Plant Cell Rep ; 43(1): 4, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38117314

RESUMEN

KEY MESSAGE: The leaf hyponasty response depends on tip-to-petiole auxin transport. This transport can happen through two parallel pathways: active trans-membrane transport mediated by PIN proteins and passive diffusion through plasmodesmata. A plant's ability to counteract potential shading by neighboring plants depends on transport of the hormone auxin. Neighbor sensing at the leaf tip triggers auxin production. Once this auxin reaches the abaxial petiole epidermis, it causes cell elongation, which leads to leaf hyponasty. Two pathways are known to contribute to this intercellular tip-to-petiole auxin movement: (i) transport facilitated by plasma membrane-localized PIN auxin transporters and (ii) diffusion enabled by plasmodesmata. We tested if these two modes of transport are arranged sequentially or in parallel. Moreover, we investigated if they are functionally linked. Mutants in which one of the two pathways is disrupted indicated that both pathways are necessary for a full hyponasty response. Visualization of PIN3-GFP and PIN7-GFP localization indicated PIN-mediated transport in parallel to plasmodesmata-mediated transport along abaxial midrib epidermis cells. We found plasmodesmata-mediated cell coupling in the pin3pin4pin7 mutant to match wild-type levels, indicating no redundancy between pathways. Similarly, PIN3, PIN4 and PIN7 mRNA levels were unaffected in a mutant with disrupted plasmodesmata pathway. Our results provide mechanistic insight on leaf hyponasty, which might facilitate the manipulation of the shade avoidance response in crops.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Plasmodesmos , Transporte Biológico , Proteínas de Transporte de Membrana/genética , Ácidos Indolacéticos
12.
Artículo en Inglés | MEDLINE | ID: mdl-38036509

RESUMEN

Surface modification of thermoplastic polyurethane (TPU) could significantly enhance its suitability for biomedical devices and public health products. Nevertheless, customized modification of polyurethane surfaces with robust interfacial bonding and diverse functions via a simple method remains an enormous challenge. Herein, a novel thermoplastic polyurethane with a photoinitiated benzophenone unit (BPTPU) is designed and synthesized, which can directly grow functional hydrogel coating on polyurethane (PU) in situ by initiating polymerization of diverse monomers under ultraviolet irradiation, without the involvement of organic solvent. The resulting coating not only exhibits tissue-like softness, controllable thickness, lubrication, and robust adhesion strength but also provides customized functions (i.e., antifouling, stimuli-responsive, antibacterial, and fluorescence emission) to the original passive polymer substrates. Importantly, BPTPU can be blended with commercial TPU to produce the BPTPU-based tube by an extruder. Only a trace amount of BPTPU can endow the tube with good photoinitiated capacity. As a proof of concept, the hydrophilic hydrogel-coated BPTPU is shown to mitigate foreign body response in vivo and prevent thrombus formation in rat blood circulation without anticoagulants in vitro. This work offers a new strategy to guide the design of functional polyurethane, an elastomer-hydrogel composite, and holds great prospects for clinical translation.

13.
Gels ; 9(10)2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37888362

RESUMEN

Smart hydrogels possess both intelligent and responsive properties, which are designed to exhibit specific responses to external stimuli such as changes in temperature, pH, or the presence of specific ions/counterions, making them "smart" or "responsive" materials [...].

14.
Nat Commun ; 14(1): 6401, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828020

RESUMEN

Pesticides are widely used to increase agricultural productivity, however, weak adhesion and deposition lead to low efficient utilization. Herein, we prepare a nanopesticide formulation (tebuconazole nanopesticides) which is leaf-adhesive, and water-dispersed via a rapid nanoparticle precipitation method, flash nanoprecipitation, using temperature-responsive copolymers poly-(2-(dimethylamino)ethylmethylacrylate)-b-poly(ε-caprolactone) as the carrier. Compared with commercial suspensions, the encapsulation by the polymer improves the deposition of TEB, and the contact angle on foliage is lowered by 40.0°. Due to the small size and strong van der Waals interactions, the anti-washing efficiency of TEB NPs is increased by 37% in contrast to commercial ones. Finally, the acute toxicity of TEB NPs to zebrafish shows a more than 25-fold reduction as compared to commercial formulation indicating good biocompatibility of the nanopesticides. This work is expected to enhance pesticide droplet deposition and adhesion, maximize the use of pesticides, tackling one of the application challenges of pesticides.


Asunto(s)
Plaguicidas , Agua , Animales , Temperatura , Pez Cebra , Polímeros , Hojas de la Planta
15.
BMC Neurosci ; 24(1): 49, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710208

RESUMEN

BACKGROUND: Intervertebral disc herniation, degenerative lumbar spinal stenosis, and other lumbar spine diseases can occur across most age groups. MRI examination is the most commonly used detection method for lumbar spine lesions with its good soft tissue image resolution. However, the diagnosis accuracy is highly dependent on the experience of the diagnostician, leading to subjective errors caused by diagnosticians or differences in diagnostic criteria for multi-center studies in different hospitals, and inefficient diagnosis. These factors necessitate the standardized interpretation and automated classification of lumbar spine MRI to achieve objective consistency. In this research, a deep learning network based on SAFNet is proposed to solve the above challenges. METHODS: In this research, low-level features, mid-level features, and high-level features of spine MRI are extracted. ASPP is used to process the high-level features. The multi-scale feature fusion method is used to increase the scene perception ability of the low-level features and mid-level features. The high-level features are further processed using global adaptive pooling and Sigmoid function to obtain new high-level features. The processed high-level features are then point-multiplied with the mid-level features and low-level features to obtain new high-level features. The new high-level features, low-level features, and mid-level features are all sampled to the same size and concatenated in the channel dimension to output the final result. RESULTS: The DSC of SAFNet for segmenting 17 vertebral structures among 5 folds are 79.46 ± 4.63%, 78.82 ± 7.97%, 81.32 ± 3.45%, 80.56 ± 5.47%, and 80.83 ± 3.48%, with an average DSC of 80.32 ± 5.00%. The average DSC was 80.32 ± 5.00%. Compared to existing methods, our SAFNet provides better segmentation results and has important implications for the diagnosis of spinal and lumbar diseases. CONCLUSIONS: This research proposes SAFNet, a highly accurate and robust spine segmentation deep learning network capable of providing effective anatomical segmentation for diagnostic purposes. The results demonstrate the effectiveness of the proposed method and its potential for improving radiological diagnosis accuracy.

16.
J Mater Chem B ; 11(30): 7197-7208, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37427710

RESUMEN

Efficient wound healing has attracted great interest due to the prevalence of skin damage. It is still highly desired yet challenging to construct a multi-drug loaded wound dressing that can release different drugs at different times to meet specific requirements towards different healing stages. Herein, a wound dressing was developed based on thermoresponsive zwitterionic nanocapsules (ZNs) that were sandwiched between two double-layered fabrics to regulate the multiple drug release pathway. The salt-response of the obtained ZNs was greatly suppressed while its transition temperature was regulated to be ∼37 °C to fit the needs of the physiological environment. Two bioactive substances, human basic fibroblast growth factor (bFGF) for tissue regeneration and norfloxacin for anti-inflammation, were loaded in the ZNs and on the surface of fabrics, respectively, to achieve separative gradient release. The in vitro drug release tests revealed that norfloxacin could be released relatively fast (∼24 h) while the release rate of bFGF was much slower (∼168 h), matching the specific time requirements of inflammation and proliferation stages very well. The in vivo wound healing experiment also confirmed the high wound healing efficiency of the wound dressing developed here, compared to the wound dressings without gradient release characteristics. We believe the strategy illustrated here will provide new insights into the design and biomedical applications of zwitterionic nanocapsules.


Asunto(s)
Nanocápsulas , Humanos , Norfloxacino , Cicatrización de Heridas , Vendajes
17.
Biochem Biophys Res Commun ; 675: 146-154, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37473529

RESUMEN

Metformin (MET) is a well-documented drug used in the treatment of type II diabetes. Recent studies have revealed its potential anti-tumor effects in various types of cancer. However, the dosage of MET required to exhibit anti-tumor activity is considerably higher than the clinically recommended dosage. In this study, we investigated the synergistical anti-tumor effect of glucose deprivation and MET in MDA-MB-231 cells, which represents a triple-negative breast cancer subtype (TNBC). Our findings demonstrate that glucose deprivation significantly enhances the anti-tumor activity of MET by reducing cell proliferation and increasing cell apoptosis. RNA-seq was performed to identify the key molecules involved in this process. Our results indicate that unfolded protein response of endoplasmic reticulum (UPRER) was significantly activated upon glucose starvation combining with MET compared to glucose starvation alone. Notably, the combined treatment significantly activated UPRER signaling pathway through ATF4/ATF3/CHOP axis, due to enhanced UPRER stress. In conclusion, our study suggests that the synergistic effects of MET and glucose deprivation suppress cell proliferation in TNBC by activating pro-apoptotic molecules through UPRER stress. These findings have potential implications for the anti-tumor application of MET in TNBC.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Neoplasias de la Mama Triple Negativas , Humanos , Glucosa/farmacología , Metformina/farmacología , Neoplasias de la Mama Triple Negativas/patología , Línea Celular Tumoral , Respuesta de Proteína Desplegada , Estrés del Retículo Endoplásmico , Apoptosis
18.
Cell Biochem Biophys ; 81(3): 543-552, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37421591

RESUMEN

Genetically engineered stem cells, not only acting as vector delivering growth factors or cytokines but also exhibiting improved cell properties, are promising cells for periodontal tissue regeneration. Sema3A is a power secretory osteoprotective factor. In this study, we aimed to construct Sema3A modified periodontal ligament stem cells (PDLSCs) and evaluated their osteogenic capability and crosstalk with pre-osteoblasts MC3T3-E1. First, Sema3A modified PDLSCs was constructed using lentivirus infection system carrying Sema3A gene and the transduction efficiency was analyzed. The osteogenic differentiation and proliferation of Sema3A-PDLSCs was evaluated. Then, MC3T3-E1 was directly co-cultured with Sema3A-PDLSCs or cultured in condition medium of Sema3A-PDLSCs and the osteogenic ability of MC3T3-E1 was assessed. The results showed that Sema3A-PDLSCs expressed and secreted upregulated Sema3A protein, which confirmed successful construction of Sema3A modified PDLSCs. After osteogenic induction, Sema3A-PDLSCs expressed upregulated ALP, OCN, RUNX2, and SP7 mRNA, expressed higher ALP activity, and produced more mineralization nodes, compared with Vector-PDLSCs. Whereas, there was no obvious differences in proliferation between Sema3A-PDLSCs and Vector-PDLSCs. MC3T3-E1 expressed upregulated mRNA of ALP, OCN, RUNX2, and SP7 when directly co-cultured with Sema3A-PDLSCs than Vector-PDLSCs. MC3T3-E1 also expressed upregulated osteogenic markers, showed higher ALP activity, and produced more mineralization nodes when cultured using condition medium of Sema3A-PDLSCs instead of Vector-PDLSCs. In conclusion, our results indicated that Sema3A modified PDLSCs showed enhanced osteogenic capability, and also facilitated differentiation of pre-osteoblasts.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , Osteogénesis , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Osteoblastos/metabolismo , Osteogénesis/fisiología , Ligamento Periodontal , ARN Mensajero/metabolismo , Semaforina-3A/genética , Semaforina-3A/farmacología , Semaforina-3A/metabolismo , Células Madre/metabolismo , Animales , Ratones
19.
Ecotoxicol Environ Saf ; 262: 115191, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37390725

RESUMEN

Duck farms are one of the important reservoirs of antimicrobial resistance genes (ARGs) that spread to humans and the environment. However, few studies have focused on the characteristics of antimicrobial profiles in duck farms. Here we explored the distribution characteristics and potential transmission mechanisms of ARGs in ducks, farm workers, and the environment in duck farms by a metagenomic approach. The results showed that the highest abundance and diversity of ARGs were found in duck manure. The abundance and diversity of ARGs in workers and environmental samples were higher than those in the control group. tet(X) and its variants were prevalent in duck farms, with tet(X10) being the most abundant. The genetic structure "tet(X)-like + α/ß hydrolase" was found in ducks, workers, and the environment, implying that tet(X) and its variants have been widely spread in duck farms. Network analysis indicated that ISVsa3 and IS5075 might play an important role in the coexistence of ARGs and metal resistance genes (MRGs). The Mantel tests showed that mobile genetic elements (MGEs) were significantly correlated with ARG profiles. The results suggest that duck manure may be a potential hotspot source of ARGs, including tet(X) variants that spread to the surrounding environment and workers via MGEs. These results help us optimize the antimicrobials strategy and deepen our understanding of ARG spread in duck farms.

20.
Biomacromolecules ; 24(7): 3345-3356, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37380981

RESUMEN

Oral defects lead to a series of function disorders, severely threatening the patients' health. Although injectable hydrogels are widely studied in tissue regeneration, their mechanical performance is usually stationary after implant, without further self-adaption toward the microenvironment. Herein, an injectable hydrogel with programmed mechanical kinetics of instant gelation and gradual self-strengthening along with outstanding biodegradation ability is developed. The fast gelation is realized through rapid Schiff base reaction between biodegradable chitosan and aldehyde-modified sodium hyaluronate, while self-strengthening is achieved via slow reaction between redundant amino groups on chitosan and epoxy-modified hydroxyapatite. The resultant hydrogel also possesses multiple functions including (1) bio-adhesion, (2) self-healing, (3) bactericidal, (4) hemostasis, and (5) X-ray in situ imaging, which can be effectively used for oral jaw repair. We believe that the strategy illustrated here will provide new insights into dynamic mechanical regulation of injectable hydrogels and promote their application in tissue regeneration.


Asunto(s)
Quitosano , Hidrogeles , Humanos , Cinética , Polisacáridos , Durapatita
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA