Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Environ Geochem Health ; 46(8): 270, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954122

RESUMEN

Radioactive nuclides cesium (Cs) and strontium (Sr) possess long half-lives, with 135Cs at approximately 2.3 million years and 87Sr at about 49 billion years. Their persistent accumulation can result in long-lasting radioactive contamination of soil ecosystems. This study employed geo-accumulation index (Igeo), pollution load index (PLI), potential ecological risk index (PEPI), health risk assessment model (HRA), and Monte Carlo simulation to evaluate the pollution and health risks of Cs and Sr in the surface soil of different functional areas in a typical mining city in China. Positive matrix factorization (PMF) model was used to elucidate the potential sources of Cs and Sr and the respective contribution rates of natural and anthropogenic sources. The findings indicate that soils in the mining area exhibited significantly higher levels of Cs and Sr pollution compared to smelting factory area, agricultural area, and urban residential area. Strontium did not pose a potential ecological risk in any studied functional area. The non-carcinogenic health risk of Sr to the human body in the study area was relatively low. Because of the lack of parameters for Cs, the potential ecological and human health risks of Cs was not calculated. The primary source of Cs in the soil was identified as the parent material from which the soil developed, while Sr mainly originated from associated contamination caused by mining activities. This research provides data for the control of Cs and Sr pollution in the surface soil of mining city.


Asunto(s)
Radioisótopos de Cesio , Minería , Contaminantes Radiactivos del Suelo , Medición de Riesgo , China , Contaminantes Radiactivos del Suelo/análisis , Radioisótopos de Cesio/análisis , Humanos , Radioisótopos de Estroncio/análisis , Cesio/análisis , Ciudades , Suelo/química , Método de Montecarlo , Monitoreo de Radiación
2.
BMC Genomics ; 25(1): 719, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054472

RESUMEN

BACKGROUND: Pigs serve as a crucial source of protein in the human diet and play a fundamental role in ensuring food security. However, infectious diseases caused by bacteria or viruses are a major threat to effective global pig farming, jeopardizing human health. Peripheral blood mononuclear cells (PBMCs) are a mixture of immune cells that play crucial roles in immunity and disease resistance in pigs. Previous studies on the gene expression regulation patterns of PBMCs have concentrated on a single immune stimulus or immune cell subpopulation, which has limited our comprehensive understanding of the mechanisms of the pig immune response. RESULTS: Here, we integrated and re-analyzed RNA-seq data published online for porcine PBMC stimulated by lipopolysaccharide (LPS), polyinosinic acid (PolyI:C), and various unknown microorganisms (EM). The results revealed that gene expression and its functional characterization are highly specific to the pathogen, identifying 603, 254, and 882 pathogen-specific genes and 38 shared genes, respectively. Notably, LPS and PolyI:C stimulation directly triggered inflammatory and immune-response pathways, while exposure to mixed microbes (EM) enhanced metabolic processes. These pathogen-specific genes were enriched in immune trait-associated quantitative trait loci (QTL) and eGenes in porcine immune tissues and were implicated in specific cell types. Furthermore, we discussed the roles of eQTLs rs3473322705 and rs1109431654 in regulating pathogen- and cell-specific genes CD300A and CD93, using cellular experiments. Additionally, by integrating genome-wide association studies datasets from 33 complex traits and diseases in humans, we found that pathogen-specific genes were significantly enriched for immune traits and metabolic diseases. CONCLUSIONS: We systematically analyzed the gene expression profiles of the three stimulations and demonstrated pathogen-specific and cell-specific gene regulation across different stimulations in porcine PBMCs. These findings enhance our understanding of shared and distinct regulatory mechanisms of genetic variants in pig immune traits.


Asunto(s)
Leucocitos Mononucleares , Lipopolisacáridos , Poli I-C , Sitios de Carácter Cuantitativo , Animales , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/inmunología , Porcinos , Poli I-C/farmacología , Lipopolisacáridos/farmacología , Perfilación de la Expresión Génica , Transcriptoma , Regulación de la Expresión Génica
3.
Artículo en Inglés | MEDLINE | ID: mdl-38956905

RESUMEN

The article has been withdrawn at the request of the authors.Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.The Bentham Editorial Policy on Article Withdrawal can be found at https://benthamscience.com/editorial-policies-main.php BENTHAM SCIENCE DISCLAIMER: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simul-taneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been pub-lished elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.

4.
Front Immunol ; 15: 1400431, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994370

RESUMEN

Background: Clear Cell Renal Cell Carcinoma (ccRCC) is the most common type of kidney cancer, characterized by high heterogeneity and complexity. Recent studies have identified mitochondrial defects and autophagy as key players in the development of ccRCC. This study aims to delve into the changes in mitophagic activity within ccRCC and its impact on the tumor microenvironment, revealing its role in tumor cell metabolism, development, and survival strategies. Methods: Comprehensive analysis of ccRCC tumor tissues using single cell sequencing and spatial transcriptomics to reveal the role of mitophagy in ccRCC. Mitophagy was determined to be altered among renal clear cells by gene set scoring. Key mitophagy cell populations and key prognostic genes were identified using NMF analysis and survival analysis approaches. The role of UBB in ccRCC was also demonstrated by in vitro experiments. Results: Compared to normal kidney tissue, various cell types within ccRCC tumor tissues exhibited significantly increased levels of mitophagy, especially renal clear cells. Key genes associated with increased mitophagy levels, such as UBC, UBA52, TOMM7, UBB, MAP1LC3B, and CSNK2B, were identified, with their high expression closely linked to poor patient prognosis. Particularly, the ubiquitination process involving the UBB gene was found to be crucial for mitophagy and its quality control. Conclusion: This study highlights the central role of mitophagy and its regulatory factors in the development of ccRCC, revealing the significance of the UBB gene and its associated ubiquitination process in disease progression.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Mitofagia , Análisis de la Célula Individual , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Mitofagia/genética , Neoplasias Renales/genética , Neoplasias Renales/patología , Neoplasias Renales/metabolismo , Análisis de la Célula Individual/métodos , Perfilación de la Expresión Génica , Transcriptoma , Microambiente Tumoral/genética , Regulación Neoplásica de la Expresión Génica , Pronóstico , Biomarcadores de Tumor/genética , Línea Celular Tumoral
5.
Front Oncol ; 14: 1422634, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39040438

RESUMEN

Ultrasound-guided radiofrequency ablation (RFA) emerges as a minimally invasive strategy for papillary thyroid microcarcinoma (PTMC), offering advantages over traditional surgical approaches. RFA employs high-frequency electric currents under precise ultrasound guidance to ablate cancerous tissue. Clinical trials consistently demonstrate RFA's efficacy in tumor control and patient-reported outcomes. However, long-term studies are essential to validate its durability and monitor for potential complications. Collaborative efforts among various medical disciplines ensure procedural accuracy and comprehensive postoperative care. Technological innovations, such as enhanced ultrasound imaging and temperature control, promise to refine RFA's precision and effectiveness. Nevertheless, challenges persist, including the need for standardized protocols and comparative studies with traditional treatments. Future research should focus on long-term outcomes, patient selection criteria, and optimization of procedural techniques to solidify RFA's role in PTMC management. RFA presents a promising avenue for PTMC treatment, warranting further investigation and refinement in clinical practice.

6.
Langmuir ; 40(28): 14245-14256, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38941474

RESUMEN

Metal oxides can activate peroxymonosulfate (PMS) for the catalytic degradation of organic dyes. However, achieving high catalytic efficiency, structural stability, ease of recovery, and recyclability remains challenging for both research and practical applications. To address these requirements, a bimetallic oxide, CuMnO2, was synthesized using a simple hydrothermal approach and was encapsulated to create hydrogel beads, CS-Ca@PEI/CuMnO2. Subsequently, CS-Ca@PEI/CuMnO2 was used to activate PMS and establish a solid-liquid heterogeneous oxidation system (CS-Ca@PEI/CuMnO2/PMS) for the degradation of Congo red (CR). The effects of various parameters such as different systems, catalyst dosages, initial pH values, PMS concentrations, temperatures, and anion types on the catalytic degradation properties of CS-Ca@PEI/CuMnO2 for CR were systematically evaluated. The results indicated that CS-Ca@PEI/CuMnO2 has exceptional degradation capacity, achieving 91.0% degradation of CR at pH 7. After three degradation cycles, the catalyst maintained an 86.9% degradation efficiency compared to its original performance, highlighting its robust structural stability. The presence of reactive radicals, specifically 1O2 and •O2-, were confirmed through quenching experiments, X-ray photoelectron spectroscopy (XPS), and electron paramagnetic resonance spectroscopy (EPR). Liquid chromatography-tandem mass spectrometry (LC-MS) revealed ten proposed intermediates in the catalytic degradation process. Due to its exceptional catalytic performance, structural durability, recyclability, and ease of retrieval, the catalyst shows great potential for effectively removing organic pollutants from industrial wastewater.

8.
Oral Dis ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38696646

RESUMEN

BACKGROUND: Head and neck squamous carcinoma (HNSC) is a prevalent global malignancy with limited treatment options, which necessitates the development of novel therapeutic strategies. Disulfidptosis, a recently discovered and unique cell death pathway, may offer promise as a treatment target in HNSC. MATERIALS AND METHODS: We identified disulfidptosis-related genes (DRGs) using multiple algorithms and developed a prognostic model based on a disulfidptosis-related gene index (DRGI). The model's predictive accuracy was assessed by ROC-AUC, and patients were stratified by risk scores. We investigated the tumor immune microenvironment, immune responses, tumorigenesis pathways, and chemotherapy sensitivity (IC50). We also constructed a diagnostic model using 20 machine-learning algorithms and validated PCBP2 expression through RT-qPCR and western blot. RESULTS: We developed a 12-DRG DRGI prognostic model, classifying patients into high- and low-risk groups, with the high-risk group experiencing poorer clinical outcomes. Notable differences in tumor immune microenvironment and chemosensitivity were observed, with reduced immune activity and suboptimal treatment responses in the high-risk group. Advanced machine learning and in-vitro experiments supported DRGI's potential as a reliable HNSC diagnostic biomarker. CONCLUSION: We established a novel DRGI-based prognostic and diagnostic model for HNSC, exploring its tumor immune microenvironment implications, and offering valuable insights for future research and clinical trials.

9.
BMC Genomics ; 25(1): 445, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711039

RESUMEN

BACKGROUND: Characterization of regulatory variants (e.g., gene expression quantitative trait loci, eQTL; gene splicing QTL, sQTL) is crucial for biologically interpreting molecular mechanisms underlying loci associated with complex traits. However, regulatory variants in dairy cattle, particularly in specific biological contexts (e.g., distinct lactation stages), remain largely unknown. In this study, we explored regulatory variants in whole blood samples collected during early to mid-lactation (22-150 days after calving) of 101 Holstein cows and analyzed them to decipher the regulatory mechanisms underlying complex traits in dairy cattle. RESULTS: We identified 14,303 genes and 227,705 intron clusters expressed in the white blood cells of 101 cattle. The average heritability of gene expression and intron excision ratio explained by cis-SNPs is 0.28 ± 0.13 and 0.25 ± 0.13, respectively. We identified 23,485 SNP-gene expression pairs and 18,166 SNP-intron cluster pairs in dairy cattle during early to mid-lactation. Compared with the 2,380,457 cis-eQTLs reported to be present in blood in the Cattle Genotype-Tissue Expression atlas (CattleGTEx), only 6,114 cis-eQTLs (P < 0.05) were detected in the present study. By conducting colocalization analysis between cis-e/sQTL and the results of genome-wide association studies (GWAS) from four traits, we identified a cis-e/sQTL (rs109421300) of the DGAT1 gene that might be a key marker in early to mid-lactation for milk yield, fat yield, protein yield, and somatic cell score (PP4 > 0.6). Finally, transcriptome-wide association studies (TWAS) revealed certain genes (e.g., FAM83H and TBC1D17) whose expression in white blood cells was significantly (P < 0.05) associated with complex traits. CONCLUSIONS: This study investigated the genetic regulation of gene expression and alternative splicing in dairy cows during early to mid-lactation and provided new insights into the regulatory mechanisms underlying complex traits of economic importance.


Asunto(s)
Lactancia , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Animales , Bovinos/genética , Lactancia/genética , Femenino , Empalme del ARN , Estudio de Asociación del Genoma Completo , Perfilación de la Expresión Génica , Intrones , Transcriptoma
10.
RSC Adv ; 14(17): 11746-11757, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38617574

RESUMEN

Sludge biochar loaded with Fe-Mn oxides (FMBC) was prepared and employed to remove Cr(vi) from wastewater. The influences of solution pH, co-existing ion, contact time, adsorption temperature and Cd(vi) concentrations on removing Cr(vi) by FMBC were investigated. The Cr(vi) adsorption on FMBC had strong pH dependence. Additionally, Na+, Mg2+, Ca2+, SiO32-, NO3- and Cl- ions exhibited no influence on Cr(vi) removal efficiency for FMBC, whereas there were inhibition effects of Pb2+, Cu2+, Ni2+, CO32-, SO42-, and PO43- on removing Cr(vi). The Cr(vi) adsorption from solution for FMBC was well described by models of pseudo-second-order and Langmuir, and the largest Cr(vi) removal capacity of FMBC reached 172.3 mg g-1. FMBC had good capacity for treating electroplating wastewater and mineral dissolving wastewater containing Cr(vi). After five regenerations, the 50 and 5 mg L-1 Cr(vi) removing efficiency of FMBC was 82.34% and 97.68%, respectively. The Cr(vi) removal for FMBC involved adsorption-reduction and re-adsorption of Cr(iii) generated by reduction. These results indicated that FMBC has good prospects for remediating Cr(vi)-containing wastewater.

11.
Front Neurol ; 15: 1329132, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38440112

RESUMEN

Purpose: In the realm of pain management, traditional Chinese medicine, specifically acupuncture, has garnered increasing attention. This meta-analysis pioneers the evaluation of acupuncture's effectiveness in treating insomnia among hypertensive patients. Methods: We conducted a comprehensive search across several databases-PubMed, Web of Science, Cochrane Library, WANFANG, China National Knowledge Infrastructure (CNKI), Sinomed, and the Chinese Journal of Science and Technology (VIP). Additionally, forward and backward articles of studies published from the inception of these databases until 10 September 2023, were reviewed. This systematic review and meta-analysis included all randomized controlled trials (RCTs) focusing on acupuncture for insomnia in hypertensive patients, without imposing language or date restrictions. We rigorously assessed all outcome measures reported in these trials. The evidence was synthesized by calculating the difference between mean differences (MD) in symptom change. The quality of the evidence was determined using the Cochrane Risk of Bias tool. This study is registered with PROSPERO under number CRD42023461760. Results: Our analysis included 16 RCTs, comprising 1,309 patients. The findings revealed that acupuncture was significantly more effective than the control group in reducing insomnia symptoms, as indicated by a greater decrease in the PSQI score (MD = -3.1, 95% CI [-3.77 to -2.62], p < 0.00001). Additionally, improvements in both systolic and diastolic blood pressure were more pronounced in the acupuncture group compared to the control group (SBP: MD = -10.31, 95% CI [-16.98 to -3.64], p = 0.002; DBP: MD = -5.71, 95% CI [-8.19 to -3.23], p < 0.00001). These results suggest that acupuncture not only improves sleep quality but also lowers blood pressure in patients suffering from hypertension and insomnia. Further research is warranted to elucidate optimal acupuncture points and the duration of treatment for maximized therapeutic effect.Systematic review registration:https://www.crd.york.ac.uk/prospero, CRD42023461760.

12.
Front Biosci (Landmark Ed) ; 29(3): 130, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38538268

RESUMEN

BACKGROUND: The study on Head and Neck Squamous Cell Carcinoma (HNSCC), a prevalent and aggressive form of head and neck cancer, focuses on the often-overlooked role of soluble mediators. The objective is to leverage a transcriptome-based risk analysis utilizing soluble mediator-related genes (SMRGs) to provide novel insights into prognosis and immunotherapy efficacy in HNSCC patients. METHODS: We analyzed the expression and prognostic significance of 10,859 SMRGs using 502 HNSCC and 44 normal samples from the TCGA-HNSC cohort in The Cancer Genome Atlas (TCGA). The samples were divided into training and test sets in a 7:3 ratio, with an additional external validation using 40 tumor samples from the International Cancer Genome Consortium (ICGC). Key differentially expressed genes (DEGs) with prognostic significance were identified through univariate and Lasso-Cox regression analyses. A prognostic model based on 20 SMRGs was developed using Lasso and multivariate Cox regression. We assessed the clinical outcomes and immune status in high-risk (HR) and low-risk (LR) HNSCC patients utilizing the BEST databases and single-sample Gene Set Enrichment Analysis (ssGSEA). RESULTS: The 20 SMRGs were crucial in predicting the prognosis of HNSCC, with the SMRG signature emerging as an independent prognostic indicator. Patients classified in the HR group exhibited poorer outcomes compared to those in the LR group. A nomogram, integrating clinical characteristics and risk scores, demonstrated substantial prognostic value. Immunotherapy appeared to be more effective in the LR group, possibly attributed to enhanced immune infiltration and expression of immune checkpoints. CONCLUSIONS: The model based on soluble mediator-associated genes offers a fresh perspective for assessing the pre-immune efficacy and showcases robust predictive capabilities. This innovative approach holds significant promise in advancing the field of precision immuno-oncology research, providing valuable insights for personalized treatment strategies in HNSCC.


Asunto(s)
Neoplasias de Cabeza y Cuello , Humanos , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Factores de Riesgo , Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/terapia
13.
J Hazard Mater ; 469: 134063, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38508112

RESUMEN

Sulfadiazine (SDZ), a widely used effective antibiotic, is resistant to conventional biological treatment, which is concerning since untreated SDZ discharge can pose a significant environmental risk. Electro-Fenton (EF) technology is a promising advanced oxidation technology for efficiently removing SDZ. However, due to the limitations of traditional experimental methods, there is a lack of in-depth study on the mechanism of ·OH-dominated SDZ degradation in EF process. In this study, an EF system was established for SDZ degradation and the transformation products (TPs) were detected by mass spectrometry. Dynamic thermodynamic, kinetic and wave function analysis of reactants, transition states and intermediates were proposed by density functional theory calculations, which was applied to elucidate the underlying mechanism of SDZ degradation. Experimental results showed that amino, benzene, and pyrimidine sites in SDZ were oxidized by ·OH, producing TPs through hydrogen abstraction and addition reactions. ·OH was kinetically more likely to attack SDZ- than SDZ. Fe(IV) dominated the single-electron transfer oxidation reaction of SDZ, and the formed organic radicals can spontaneously generate the de-SO2 product via Smiles rearrangement. Toxicity experiments showed the toxicity of SDZ and TPs can be greatly reduced. The results of this study promote the understanding of SDZ degradation mechanism in-depth. ENVIRONMENTAL IMPLICATION: Sulfadiazine (SDZ) is one of the antibiotics widely used around the world. However, it has posed a significant environmental risk due to its overuse and cannot be efficiently removed by traditional treatment methods. The lack of in-depth study on SDZ degradation mechanism under reactive species limits the improvement of SDZ degradation efficiency. Therefore, this work focused on SDZ degradation mechanism in-depth under electro-Fenton system through reactive species investigation, mass spectrometry analysis, and theoretical calculation. The results in this study can provide a theoretical basis for improving the SDZ degradation efficiency which will contribute to solving SDZ pollution problems.


Asunto(s)
Sulfadiazina , Contaminantes Químicos del Agua , Sulfadiazina/química , Antibacterianos/química , Oxidación-Reducción , Espectrometría de Masas , Contaminantes Químicos del Agua/química
14.
Sci Total Environ ; 919: 170745, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38340832

RESUMEN

Various types of pollutants widely present in environmental media, including synthetic and natural chemicals, physical pollutants such as radioactive substances, ultraviolet rays, and noise, as well as biological organisms, pose a huge threat to public health. Therefore, it is crucial to accurately and effectively explore the human physiological responses and toxicity mechanisms of pollutants to prevent diseases caused by pollutants. The emerging toxicological testing method biomimetic microfluidic chips (BMCs) exhibit great potential in environmental pollutant toxicity assessment due to their superior biomimetic properties. The BMCs are divided into cell-on-chips and organ-on-chips based on the distinctions in bionic simulation levels. Herein, we first summarize the characteristics, emergence and development history, composition and structure, and application fields of BMCs. Then, with a focus on the toxicity mechanisms of pollutants, we review the applications and advances of the BMCs in the toxicity assessment of physical, chemical, and biological pollutants, respectively, highlighting its potential and development prospects in environmental toxicology testing. Finally, the opportunities and challenges for further use of BMCs are discussed.


Asunto(s)
Contaminantes Ambientales , Humanos , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/análisis , Biomimética , Microfluídica , Salud Pública , Ecotoxicología
15.
J Exp Bot ; 75(3): 760-771, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-37891011

RESUMEN

Biological nitrogen fixation (BNF) provides a globally important input of nitrogen (N); its quantification is critical but technically challenging. Leaf reflectance spectroscopy offers a more rapid approach than traditional techniques to measure plant N concentration ([N]) and isotopes (δ15N). Here we present a novel method for rapidly and inexpensively quantifying BNF using optical spectroscopy. We measured plant [N], δ15N, and the amount of N derived from atmospheric fixation (Ndfa) following the standard traditional methodology using isotope ratio mass spectrometry (IRMS) from tissues grown under controlled conditions and taken from field experiments. Using the same tissues, we predicted the same three parameters using optical spectroscopy. By comparing the optical spectroscopy-derived results with traditional measurements (i.e. IRMS), the amount of Ndfa predicted by optical spectroscopy was highly comparable to IRMS-based quantification, with R2 being 0.90 (slope=0.90) and 0.94 (slope=1.02) (root mean square error for predicting legume δ15N was 0.38 and 0.43) for legumes grown in glasshouse and field, respectively. This novel application of optical spectroscopy facilitates BNF studies because it is rapid, scalable, low cost, and complementary to existing technologies. Moreover, the proposed method successfully captures the dynamic response of BNF to climate changes such as warming and drought.


Asunto(s)
Fabaceae , Fijación del Nitrógeno , Isótopos de Nitrógeno/análisis , Nitrógeno , Plantas , Análisis Espectral
16.
Environ Pollut ; 343: 123126, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38092336

RESUMEN

The metal vanadium has superior physical and chemical properties and has a wide range of applications in many fields of modern industry. The increasing demand for vanadium worldwide has led to the need to guarantee sustainable vanadium production. The smelting process of vanadium and titanium magnetite produces vanadium-bearing steel slag, a key material for vanadium extraction. Herein, vanadium production, consumption, and steel slag properties are discussed. A detailed review of methods for extracting vanadium from vanadium-bearing steel slag is presented, including the most commonly used roasting and leaching method, and direct leaching, bioleaching and enhanced leaching methods are also described. Finally, the rules and regulations of steel slag management are introduced. In general, it is necessary to further develop environmentally friendly vanadium extraction methods and technologies from vanadium containing solid wastes. This study provides research directions for the technology of vanadium extraction from steel slag.


Asunto(s)
Residuos Industriales , Vanadio , Vanadio/análisis , Residuos Industriales/análisis , Acero , Reciclaje , Titanio
17.
Food Chem X ; 20: 100909, 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38144841

RESUMEN

Excipient emulsions were prepared using different emulsifiers (pectin and sodium caseinate, individually or compositely) to study the emulsifying properties and their co-digested effects on the retention and bioaccessibility of carotenoids in mandarin juice, which is a good source of carotenoids in people's diet. Results showed that both pectin (PC) and pectin-sodium caseinate (PC-SC) emulsion significantly increased the carotenoids retention and bioaccessibility of mandarin juice, with the effects depending on both emulsifiers and polymer concentration. Whether for PC or PC-SC emulsion, lower pectin content accompanied with lower viscosity showed higher carotenoids bioaccessibility. And for the complexed emulsions, appropriate sodium caseinate addition could be more beneficial in improving carotenoids bioaccessibility. It had been found that the viscosity comparing with particle size seemed to play a more important role in affecting carotenoid bioaccessibility during the co-digestion. This study could provide a basis for improving the carotenoids bioaccessibility in the real system of fruits and vegetables with excipient emulsions.

18.
Bull Environ Contam Toxicol ; 111(5): 59, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37903975

RESUMEN

Vanadium (V) contamination in soil has received extensive attention due to its high toxicity. The change of mobility and bioavailability of soil V and the effects of V on the soil microbial community were studied under conditions of different V(V) spiking concentrations (0, 100, 250, and 500 mg kg-1) and aging time (1, 7, 14, 30, 45, and 60 d). The results showed that soil V mainly presented as V(IV) of all treatments throughout the aging process. At high levels of V(V) loading (250 and 500 mg kg-1), soil V(V) showed a downward trend, while bioavailable V did not change significantly within 60 d's aging. The analysis of soil bacterial community showed that Proteobacteria was the most abundant phylum in all soils, and the dominant genera Sphingomonas and Lysobacter can well adapt to high concentration V. These microorganisms exhibited great potential for bioremediation of V-contaminated soils.


Asunto(s)
Microbiota , Contaminantes del Suelo , Vanadio/toxicidad , Vanadio/análisis , Suelo/química , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Secuenciación de Nucleótidos de Alto Rendimiento , Microbiología del Suelo
19.
Front Pharmacol ; 14: 1264345, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37822877

RESUMEN

Background: Uveal melanoma (UVM) is a primary intraocular malignancy that poses a significant threat to patients' visual function and life. The basement membrane (BM) is critical for establishing and maintaining cell polarity, adult function, embryonic and organ morphogenesis, and many other biological processes. Some basement membrane protein genes have been proven to be prognostic biomarkers for various cancers. This research aimed to develop a novel risk assessment system based on BMRGs that would serve as a theoretical foundation for tailored and accurate treatment. Methods: We used gene expression profiles and clinical data from the TCGA-UVM cohort of 80 UVM patients as a training set. 56 UVM patients from the combined cohort of GSE84976 and GSE22138 were employed as an external validation dataset. Prognostic characteristics of basement membrane protein-related genes (BMRGs) were characterized by Lasso, stepwise multifactorial Cox. Multivariate analysis revealed BMRGs to be independent predictors of UVM. The TISCH database probes the crosstalk of BMEGs in the tumor microenvironment at the single-cell level. Finally, we investigated the function of ITGA5 in UVM using multiple experimental techniques, including CCK8, transwell, wound healing assay, and colony formation assay. Results: There are three genes in the prognostic risk model (ADAMTS10, ADAMTS14, and ITGA5). After validation, we determined that the model is quite reliable and accurately forecasts the prognosis of UVM patients. Immunotherapy is more likely to be beneficial for UVM patients in the high-risk group, whereas the survival advantage may be greater for UVM patients in the low-risk group. Knockdown of ITGA5 expression was shown to inhibit the proliferation, migration, and invasive ability of UVM cells in vitro experiments. Conclusion: The 3-BMRGs feature model we constructed has excellent predictive performance which plays a key role in the prognosis, informing the individualized treatment of UVM patients. It also provides a new perspective for assessing pre-immune efficacy.

20.
Int J Public Health ; 68: 1605994, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37767017

RESUMEN

Objective: To investigate the details of environmental contamination status by SARS-CoV-2 in a makeshift COVID-19 hospital. Methods: Environmental samples were collected from a makeshift hospital. The extent of contamination was assessed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) for SARS-CoV-2 RNA from various samples. Results: There was a wide range of total collected samples contaminated with SARS-CoV-2 RNA, ranging from 8.47% to 100%. Results revealed that 70.00% of sewage from the bathroom and 48.19% of air samples were positive. The highest rate of contamination was found from the no-touch surfaces (73.07%) and the lowest from frequently touched surfaces (33.40%). The most contaminated objects were the top surfaces of patient cubic partitions (100%). The median Ct values among strongly positive samples were 33.38 (IQR, 31.69-35.07) and 33.24 (IQR, 31.33-34.34) for ORF1ab and N genes, respectively. SARS-CoV-2 relic RNA can be detected on indoor surfaces for up to 20 days. Conclusion: The findings show a higher prevalence and persistence in detecting the presence of SARS-CoV-2 in the makeshift COVID-19 hospital setting. The contamination mode of droplet deposition may be more common than contaminated touches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA