Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Comput Struct Biotechnol J ; 21: 5698-5711, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38074473

RESUMEN

Variants in the gap junction beta-2 (GJB2) gene are the most common cause of hereditary hearing impairment. However, how GJB2 variants lead to local physicochemical and structural changes in the hexameric ion channels of connexin 26 (Cx26), resulting in hearing impairment, remains elusive. In this study, using molecular dynamics (MD) simulations, we showed that detached inner-wall N-terminal "plugs" aggregated to reduce the channel ion flow in a highly prevalent V37I variant in humans. To examine the predictive ability of the computational platform, an artificial mutant, V37M, of which the effect was previously unknown in hearing loss, was created. Microsecond simulations showed that homo-hexameric V37M Cx26 hemichannels had an abnormal affinity between the inner edge and N-termini to block the narrower side of the cone-shaped Cx26, while the most stable hetero-hexameric channels did not. From the perspective of the conformational energetics of WT and variant Cx26 hexamers, we propose that unaffected carriers could result from a conformational predominance of the WT and pore-shrinkage-incapable hetero-hexamers, while mice with homozygous variants can only harbor an unstable and dysfunctional N-termini-blocking V37M homo-hexamer. Consistent with these predictions, homozygous V37M transgenic mice exhibited apparent hearing loss, but not their heterozygous counterparts, indicating a recessive inheritance mode. Reduced channel conductivity was found in Gjb2V37M/V37M outer sulcus and Claudius cells but not in Gjb2WT/WT cells. We view that the current computational platform could serve as an assessment tool for the pathogenesis and inheritance of GJB2-related hearing impairments and other diseases caused by connexin dysfunction.

2.
IEEE J Biomed Health Inform ; 27(10): 5155-5164, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37527302

RESUMEN

Since the 90s, keyword-based search engines have been the only option for people to locate relevant web content through a simple query comprising one to a few keywords. These engines, whether free or paid, retained users' search queries and preferences, often to deliver targeted ads. Additionally, user-uploaded articles for plagiarism detection can further be stored as part of service providers' expanding databases for profit. Essentially, users could not search without exposing their queries to these providers. We present a new solution here: a method for searching the internet using a full article as a query without disclosing the content. Our Sapiens Aperio Veritas Engine (S.A.V.E.) uses an encoding scheme and an FM-index search, borrowed from next-generation human genome sequencing. Each word in a user's query is transformed into one of 12 "amino acids" to create a pseudo-biological sequence (PBS) on the user's device. Plagiarism checks are done by users submitting their locally created PBSs to our cloud service. This detects identical content in our database, which includes all English and Chinese Wikipedia articles and Open Access journals up to April 2021. PBSs, longer than 12 "amino acids", show accurate results with less than 0.8% false positives. Performance-wise, S.A.V.E. runs at a similar genome-mapping speed as Bowtie and is >5 orders faster than BLAST. With both standard and private modes, S.A.V.E. offers a revolutionary, privacy-first search and plagiarism check system. We believe this sets an exciting precedent for future search engines prioritizing user confidentiality. S.A.V.E. can be accessed at https://dyn.life.nthu.edu.tw/SAVE/.

3.
Curr Opin Struct Biol ; 78: 102517, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36587424

RESUMEN

Proteins sample an ensemble of conformers under physiological conditions, having access to a spectrum of modes of motions, also called intrinsic dynamics. These motions ensure the adaptation to various interactions in the cell, and largely assist in, if not determine, viable mechanisms of biological function. In recent years, machine learning frameworks have proven uniquely useful in structural biology, and recent studies further provide evidence to the utility and/or necessity of considering intrinsic dynamics for increasing their predictive ability. Efficient quantification of dynamics-based attributes by recently developed physics-based theories and models such as elastic network models provides a unique opportunity to generate data on dynamics for training ML models towards inferring mechanisms of protein function, assessing pathogenicity, or estimating binding affinities.


Asunto(s)
Aprendizaje Automático , Proteínas , Proteínas/química
4.
EMBO Rep ; 24(1): e54935, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36314725

RESUMEN

The centrosome, a non-membranous organelle, constrains various soluble molecules locally to execute its functions. As the centrosome is surrounded by various dense components, we hypothesized that it may be bordered by a putative diffusion barrier. After quantitatively measuring the trapping kinetics of soluble proteins of varying size at centrosomes by a chemically inducible diffusion trapping assay, we find that centrosomes are highly accessible to soluble molecules with a Stokes radius of less than 5.8 nm, whereas larger molecules rarely reach centrosomes, indicating the existence of a size-dependent diffusion barrier at centrosomes. The permeability of this barrier is tightly regulated by branched actin filaments outside of centrosomes and it decreases during anaphase when branched actin temporally increases. The actin-based diffusion barrier gates microtubule nucleation by interfering with γ-tubulin ring complex recruitment. We propose that actin filaments spatiotemporally constrain protein complexes at centrosomes in a size-dependent manner.


Asunto(s)
Microtúbulos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Actinas/metabolismo , Centrosoma/metabolismo , Citoesqueleto de Actina/metabolismo
5.
Nat Commun ; 13(1): 102, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013238

RESUMEN

The systematic design of functional peptides has technological and therapeutic applications. However, there is a need for pattern-based search engines that help locate desired functional motifs in primary sequences regardless of their evolutionary conservation. Existing databases such as The Protein Secondary Structure database (PSS) no longer serves the community, while the Dictionary of Protein Secondary Structure (DSSP) annotates the secondary structures when tertiary structures of proteins are provided. Here, we extract 1.7 million helices from the PDB and compile them into a database (Therapeutic Peptide Design database; TP-DB) that allows queries of compounded patterns to facilitate the identification of sequence motifs of helical structures. We show how TP-DB helps us identify a known purification-tag-specific antibody that can be repurposed into a diagnostic kit for Helicobacter pylori. We also show how the database can be used to design a new antimicrobial peptide that shows better Candida albicans clearance and lower hemolysis than its template homologs. Finally, we demonstrate how TP-DB can suggest point mutations in helical peptide blockers to prevent a targeted tumorigenic protein-protein interaction. TP-DB is made available at http://dyn.life.nthu.edu.tw/design/ .


Asunto(s)
Aminoácidos/química , Péptidos Antimicrobianos/química , Antineoplásicos/química , Programas Informáticos , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Animales , Péptidos Antimicrobianos/metabolismo , Péptidos Antimicrobianos/farmacología , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Bases de Datos de Proteínas , Diseño de Fármacos/métodos , Humanos , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Conformación Proteica en Hélice alfa , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Relación Estructura-Actividad
6.
Elife ; 102021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34779768

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive and highly lethal disease, which warrants the critical need to identify new therapeutic targets. We show that Zinc Fingers and Homeoboxes 2 (ZHX2) is amplified or overexpressed in TNBC cell lines and patients. Functionally, depletion of ZHX2 inhibited TNBC cell growth and invasion in vitro, orthotopic tumor growth, and spontaneous lung metastasis in vivo. Mechanistically, ZHX2 bound with hypoxia-inducible factor (HIF) family members and positively regulated HIF1α activity in TNBC. Integrated ChIP-seq and gene expression profiling demonstrated that ZHX2 co-occupied with HIF1α on transcriptionally active promoters marked by H3K4me3 and H3K27ac, thereby promoting gene expression. Among the identified ZHX2 and HIF1α coregulated genes, overexpression of AP2B1, COX20, KDM3A, or PTGES3L could partially rescue TNBC cell growth defect by ZHX2 depletion, suggested that these downstream targets contribute to the oncogenic role of ZHX2 in an accumulative fashion. Furthermore, multiple residues (R491, R581, and R674) on ZHX2 are important in regulating its phenotype, which correspond with their roles on controlling ZHX2 transcriptional activity in TNBC cells. These studies establish that ZHX2 activates oncogenic HIF1α signaling, therefore serving as a potential therapeutic target for TNBC.


Asunto(s)
Carcinogénesis/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Factores de Transcripción/genética , Neoplasias de la Mama Triple Negativas/genética , Línea Celular Tumoral , Perfilación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Factores de Transcripción/metabolismo
7.
Pharmaceutics ; 13(7)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206631

RESUMEN

Opioids account for 69,000 overdose deaths per annum worldwide and cause serious side effects. Safer analgesics are urgently needed. The endogenous opioid peptide Leu-Enkephalin (Leu-ENK) is ineffective when introduced peripherally due to poor stability and limited membrane permeability. We developed a focused library of Leu-ENK analogs containing small hydrophobic modifications. N-pivaloyl analog KK-103 showed the highest binding affinity to the delta opioid receptor (68% relative to Leu-ENK) and an extended plasma half-life of 37 h. In the murine hot-plate model, subcutaneous KK-103 showed 10-fold improved anticonception (142%MPE·h) compared to Leu-ENK (14%MPE·h). In the formalin model, KK-103 reduced the licking and biting time to ~50% relative to the vehicle group. KK-103 was shown to act through the opioid receptors in the central nervous system. In contrast to morphine, KK-103 was longer-lasting and did not induce breathing depression, physical dependence, and tolerance, showing potential as a safe and effective analgesic.

8.
Bioinformatics ; 36(2): 449-461, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31347658

RESUMEN

MOTIVATION: Quaternary structure determination for transmembrane/soluble proteins requires a reliable computational protocol that leverages observed distance restraints and/or cyclic symmetry (Cn symmetry) found in most homo-oligomeric transmembrane proteins. RESULTS: We survey 118 X-ray crystallographically solved structures of homo-oligomeric transmembrane proteins (HoTPs) and find that ∼97% are Cn symmetric. Given the prevalence of Cn symmetric HoTPs and the benefits of incorporating geometry restraints in aiding quaternary structure determination, we introduce two new filters, the distance-restraints (DR) and the Symmetry-Imposed Packing (SIP) filters. SIP relies on a new method that can rebuild the closest ideal Cn symmetric complex from docking poses containing a homo-dimer without prior knowledge of the number (n) of monomers. Using only the geometrical filter, SIP, near-native poses of 7 HoTPs in their monomeric states can be correctly identified in the top-10 for 71% of all cases, or 29% among 31 HoTP structures obtained through homology modeling, while ZDOCK alone returns 14 and 3%, respectively. When the n is given, the optional n-mer filter is applied with SIP and returns the near-native poses for 76% of the test set within the top-10, outperforming M-ZDOCK's 55% and Sam's 47%. While applying only SIP to three HoTPs that comes with distance restraints, we found the near-native poses were ranked 1st, 1st and 10th among 54 000 possible decoys. The results are further improved to 1st, 1st and 3rd when both DR and SIP filters are used. By applying only DR, a soluble system with distance restraints is recovered at the 1st-ranked pose. AVAILABILITY AND IMPLEMENTATION: https://github.com/capslockwizard/drsip. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Modelos Químicos , Modelos Moleculares , Conformación Proteica
9.
Structure ; 28(2): 259-269.e8, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31780433

RESUMEN

Life ticks as fast as how proteins move. Computationally expensive molecular dynamics simulation has been the only theoretical tool to gauge the time and sizes of these motions, though barely to their slowest ends. Here, we convert a computationally cheap elastic network model (ENM) into a molecular timer and sizer to gauge the slowest functional motions of structured biomolecules. Quasi-harmonic analysis, fluctuation profile matching, and the Wiener-Khintchine theorem are used to define the "time periods," t, for anharmonic principal components (PCs), which are validated by nuclear magnetic resonance (NMR) order parameters. The PCs with their respective "time periods" are mapped to the eigenvalues (λENM) of the corresponding ENM modes. Thus, the power laws t(ns) = 56.1λENM-1.6 and σ2(Å2) = 32.7λENM-3.0 can be established allowing the characterization of the timescales of NMR-resolved conformers, crystallographic anisotropic displacement parameters, and important ribosomal motions, as well as motional sizes of the latter.


Asunto(s)
Biología Computacional/métodos , Proteínas/química , Cristalografía por Rayos X , Módulo de Elasticidad , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Simulación de Dinámica Molecular , Análisis de Componente Principal , Conformación Proteica , Tiempo
10.
Biophys Physicobiol ; 16: 473-484, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31984199

RESUMEN

In this study, we provide a time-dependent mechanical model, taking advantage of molecular dynamics simulations, quasiharmonic analysis of molecular dynamics trajectories, and time-dependent linear response theories to describe vibrational energy redistribution within the protein matrix. The theoretical description explained the observed biphasic responses of specific residues in myoglobin to CO-photolysis and photoexcitation on heme. The fast responses were found to be triggered by impulsive forces and propagated mainly by principal modes <40 cm-1. The predicted fast responses for individual atoms were then used to study signal propagation within the protein matrix and signals were found to propagate ~8 times faster across helices (4076 m/s) than within the helices, suggesting the importance of tertiary packing in the sensitivity of proteins to external perturbations. We further developed a method to integrate multiple intramolecular signal pathways and discover frequent "communicators". These communicators were found to be evolutionarily conserved including those distant from the heme.

11.
Bioinformatics ; 35(6): 945-952, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30169551

RESUMEN

MOTIVATION: Programmed ribosomal frameshifting (PRF) is widely used by viruses and bacteria to produce different proteins from a single mRNA template. How steric hindrance of a PRF-stimulatory mRNA structure transiently modifies the conformational dynamics of the ribosome, and thereby allows tRNA slippage, remains elusive. RESULTS: Here, we leverage linear response theories and resolution-exchanged simulations to construct a structural/dynamics model that connects and rationalizes existing structural, single-molecule and mutagenesis data by resolution-exchanged structural modelling and simulations. Our combined theoretical techniques provide a temporal and spatial description of PRF with unprecedented mechanistic details. We discover that ribosomal unfolding of the PRF-stimulating pseudoknot exerts resistant forces on the mRNA entrance of the ribosome, and thereby drives 30S subunit rolling. Such motion distorts tRNAs, leads to tRNA slippage, and in turn serves as a delicate control of cis-element's unwinding forces over PRF. AVAILABILITY AND IMPLEMENTATION: All the simulation scripts and computational implementations of our methods/analyses (including linear response theory) are included in the bioStructureM suite, provided through GitHub at https://github.com/Yuan-Yu/bioStructureM. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Sistema de Lectura Ribosómico , Conformación Molecular , Conformación de Ácido Nucleico , ARN Mensajero , ARN de Transferencia , Ribosomas
12.
PLoS One ; 13(2): e0190545, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29444082

RESUMEN

Ca2+-binding human S100A1 protein is a type of S100 protein. S100A1 is a significant mediator during inflammation when Ca2+ binds to its EF-hand motifs. Receptors for advanced glycation end products (RAGE) correspond to 5 domains: the cytoplasmic, transmembrane, C2, C1, and V domains. The V domain of RAGE is one of the most important target proteins for S100A1. It binds to the hydrophobic surface and triggers signaling transduction cascades that induce cell growth, cell proliferation, and tumorigenesis. We used nuclear magnetic resonance (NMR) spectroscopy to characterize the interaction between S100A1 and the RAGE V domain. We found that S100B could interact with S100A1 via NMR 1H-15N HSQC titrations. We used the HADDOCK program to generate the following two binary complexes based on the NMR titration results: S100A1-RAGE V domain and S100A1-S100B. After overlapping these two complex structures, we found that S100B plays a crucial role in blocking the interaction site between RAGE V domain and S100A1. A cell proliferation assay WST-1 also supported our results. This report could potentially be useful for new protein development for cancer treatment.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/fisiología , Proteínas S100/metabolismo , Calcio/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Transducción de Señal
13.
Theranostics ; 8(3): 830-845, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29344310

RESUMEN

Background: Tumor cells require proficient autophagy to meet high metabolic demands and resist chemotherapy, which suggests that reducing autophagic flux might be an attractive route for cancer therapy. However, this theory in clinical cancer research remains controversial due to the limited number of drugs that specifically inhibit autophagy-related (ATG) proteins. Methods: We screened FDA-approved drugs using a novel platform that integrates computational docking and simulations as well as biochemical and cellular reporter assays to identify potential drugs that inhibit autophagy-required cysteine proteases of the ATG4 family. The effects of ATG4 inhibitors on autophagy and tumor suppression were examined using cell culture and a tumor xenograft mouse model. Results: Tioconazole was found to inhibit activities of ATG4A and ATG4B with an IC50 of 1.3 µM and 1.8 µM, respectively. Further studies based on docking and molecular dynamics (MD) simulations supported that tioconazole can stably occupy the active site of ATG4 in its open form and transiently interact with the allosteric regulation site in LC3, which explained the experimentally observed obstruction of substrate binding and reduced autophagic flux in cells in the presence of tioconazole. Moreover, tioconazole diminished tumor cell viability and sensitized cancer cells to autophagy-inducing conditions, including starvation and treatment with chemotherapeutic agents. Conclusion: Tioconazole inhibited ATG4 and autophagy to enhance chemotherapeutic drug-induced cytotoxicity in cancer cell culture and tumor xenografts. These results suggest that the antifungal drug tioconazole might be repositioned as an anticancer drug or chemosensitizer.


Asunto(s)
Antineoplásicos/farmacología , Proteínas Relacionadas con la Autofagia/antagonistas & inhibidores , Autofagia/efectos de los fármacos , Inhibidores de Cisteína Proteinasa/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Imidazoles/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Proteínas Relacionadas con la Autofagia/química , Proteínas Relacionadas con la Autofagia/metabolismo , Sitios de Unión , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/uso terapéutico , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Células HCT116 , Humanos , Imidazoles/química , Imidazoles/uso terapéutico , Ratones , Ratones Desnudos , Unión Proteica
14.
Nucleic Acids Res ; 45(W1): W374-W380, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28472330

RESUMEN

DynOmics (dynomics.pitt.edu) is a portal developed to leverage rapidly growing structural proteomics data by efficiently and accurately evaluating the dynamics of structurally resolved systems, from individual molecules to large complexes and assemblies, in the context of their physiological environment. At the core of the portal is a newly developed server, ENM 1.0, which permits users to efficiently generate information on the collective dynamics of any structure in PDB format, user-uploaded or database-retrieved. ENM 1.0 integrates two widely used elastic network models (ENMs)-the Gaussian Network Model (GNM) and the Anisotropic Network Model (ANM), extended to take account of molecular environment. It enables users to assess potentially functional sites, signal transduction or allosteric communication mechanisms, and protein-protein and protein-DNA interaction poses, in addition to delivering ensembles of accessible conformers reconstructed at atomic details based on the global modes of motions predicted by the ANM. The 'environment' is defined in a flexible manner, from lipid bilayer and crystal contacts, to substrate or ligands bound to a protein, or surrounding subunits in a multimeric structure or assembly. User-friendly interactive features permit users to easily visualize how the environment alter the intrinsic dynamics of the query systems. ENM 1.0 can be accessed at http://enm.pitt.edu/ or http://dyn.life.nthu.edu.tw/oENM/.


Asunto(s)
Proteoma/química , Programas Informáticos , Regulación Alostérica , Internet , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Movimiento (Física) , Conformación Proteica , Transducción de Señal
15.
Artículo en Inglés | MEDLINE | ID: mdl-27921010

RESUMEN

Sortases function as cysteine transpeptidases that catalyze the covalent attachment of virulence-associated surface proteins into the cell wall peptidoglycan in Gram-positive bacteria. The substrate proteins targeted by sortase enzymes have a cell wall sorting signal (CWSS) located at the C-terminus. Up to date, it is still not well understood how sortases with structural resemblance among different classes and diverse species of bacteria achieve substrate specificity. In this study, we focus on elucidating the molecular basis for specific recognition of peptide substrate PPKTG by Clostridium difficile sortase B (Cd-SrtB). Combining structural studies, biochemical assays and molecular dynamics simulations, we have constructed a computational model of Cd-SrtBΔN26-PPKTG complex and have validated the model by site-directed mutagensis studies and fluorescence resonance energy transfer (FRET)-based assay. Furthermore, we have revealed that the fourth amino acid in the N-terminal direction from cleavage site of PPKTG forms specific interaction with Cd-SrtB and plays an essential role in configuring the peptide to allow more efficient substrate-specific cleavage by Cd-SrtB.


Asunto(s)
Aminoaciltransferasas/química , Aminoaciltransferasas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Clostridioides difficile/enzimología , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Péptidos/metabolismo , Aminoaciltransferasas/genética , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Cisteína Endopeptidasas/genética , Análisis Mutacional de ADN , Transferencia Resonante de Energía de Fluorescencia , Modelos Moleculares , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Especificidad por Sustrato
16.
J Chem Theory Comput ; 12(11): 5269-5277, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27723319

RESUMEN

Structure-encoded conformational dynamics are crucial for biomolecular functions. However, there is insufficient evidence to support the notion that dynamics play a role in guiding protein-nucleic acid interactions. Here, we show that protein-DNA docking orientation is a function of protein intrinsic dynamics, but the binding site itself does not display unique patterns in the examined spectrum of motions. This revelation is made possible by a novel technique that locates "dynamics interfaces" in proteins across which protein parts are anticorrelated in their slowest dynamics. A striking statistic is that such interfaces intersect the DNA in 97% of the 104 examined cases. These findings were then used to screen decoys generated by rigid-body docking of DNA molecules onto DNA-binding proteins. Using our method, the chance to discern near-native poses from non-native decoys increased by 2.5- and 1.6-fold, as compared to a random guess and methods based on surface complementarity, respectively. Hence, dynamically allowed protein-DNA docking orientations can work as new filters to cull and rerank docking poses and therefore enhance the predictability of DNA-binding sites that themselves do not have distinct dynamics features. Computer software implementing the method can be accessed via http://dyn.life.nthu.edu.tw/IDD/DNA.htm .


Asunto(s)
Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Sitios de Unión , ADN/química , Proteínas de Unión al ADN/química , Entropía , Simulación del Acoplamiento Molecular , Conformación de Ácido Nucleico , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína
17.
Biochim Biophys Acta ; 1864(11): 1558-69, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27524699

RESUMEN

Human S100A9 (Calgranulin B) is a Ca(2+)-binding protein, from the S100 family, that often presents as a homodimer in myeloid cells. It becomes an important mediator during inflammation once calcium binds to its EF-hand motifs. Human RAGE protein (receptor for advanced glycation end products) is one of the target-proteins. RAGE binds to a hydrophobic surface on S100A9. Interactions between these proteins trigger signal transduction cascades, promoting cell growth, proliferation, and tumorigenesis. Here, we present the solution structure of mutant S100A9 (C3S) homodimer, determined by multi-dimensional NMR experiments. We further characterize the solution interactions between mS100A9 and the RAGE V domain via NMR spectroscopy. CHAPS is a zwitterionic and non-denaturing molecule widely used for protein solubilizing and stabilization. We found out that CHAPS and RAGE V domain would interact with mS100A9 by using (1)H-(15)N HSQC NMR titrations. Therefore, using the HADDOCK program, we superimpose two binary complex models mS100A9-RAGE V domain and mS100A9-CHAPS and demonstrate that CHAPS molecules could play a crucial role in blocking the interaction between mS100A9 and the RAGE V domain. WST-1 assay results also support the conclusion that CHAPS inhibits the bioactivity of mS100A9. This report will help to inform new drug development against cell proliferation.


Asunto(s)
Antineoplásicos/farmacología , Calgranulina B/química , Proliferación Celular/efectos de los fármacos , Ácidos Cólicos/farmacología , Células Epiteliales/efectos de los fármacos , Receptor para Productos Finales de Glicación Avanzada/química , Secuencia de Aminoácidos , Antineoplásicos/química , Sitios de Unión , Calgranulina B/genética , Calgranulina B/metabolismo , Línea Celular Tumoral , Ácidos Cólicos/química , Clonación Molecular , Células Epiteliales/metabolismo , Células Epiteliales/patología , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Estructura Secundaria de Proteína , Receptor para Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad
18.
Sci Rep ; 6: 27729, 2016 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-27278931

RESUMEN

Receptor-binding and subsequent signal-activation of interleukin-1 beta (IL-1ß) are essential to immune and proinflammatory responses. We mutated 12 residues to identify sites important for biological activity and/or receptor binding. Four of these mutants with mutations in loop 9 (T117A, E118K, E118A, E118R) displayed significantly reduced biological activity. Neither T117A nor E118K mutants substantially affected receptor binding, whereas both mutants lack the IL-1ß signaling in vitro but can antagonize wild-type (WT) IL-1ß. Crystal structures of T117A, E118A, and E118K revealed that the secondary structure or surface charge of loop 9 is dramatically altered compared with that of wild-type chicken IL-1ß. Molecular dynamics simulations of IL-1ß bound to its receptor (IL-1RI) and receptor accessory protein (IL-1RAcP) revealed that loop 9 lies in a pocket that is formed at the IL-1RI/IL-1RAcP interface. This pocket is also observed in the human ternary structure. The conformations of above mutants in loop 9 may disrupt structural packing and therefore the stability in a chicken IL-1ß/IL-1RI/IL-1RAcP signaling complex. We identify the hot spots in IL-1ß that are essential to immune responses and elucidate a mechanism by which IL-1ß activity can be inhibited. These findings should aid in the development of new therapeutics that neutralize IL-1 activity.


Asunto(s)
Pollos/metabolismo , Interleucina-1beta/química , Interleucina-1beta/metabolismo , Mutación , Receptores de Interleucina-1/metabolismo , Animales , Sitios de Unión , Línea Celular , Pollos/genética , Cristalografía por Rayos X , Regulación de la Expresión Génica , Proteína Accesoria del Receptor de Interleucina-1 , Interleucina-1beta/genética , Modelos Moleculares , Simulación de Dinámica Molecular , Unión Proteica , Estructura Secundaria de Proteína
19.
Nucleic Acids Res ; 44(D1): D415-22, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26582920

RESUMEN

Gaussian network model (GNM) is a simple yet powerful model for investigating the dynamics of proteins and their complexes. GNM analysis became a broadly used method for assessing the conformational dynamics of biomolecular structures with the development of a user-friendly interface and database, iGNM, in 2005. We present here an updated version, iGNM 2.0 http://gnmdb.csb.pitt.edu/, which covers more than 95% of the structures currently available in the Protein Data Bank (PDB). Advanced search and visualization capabilities, both 2D and 3D, permit users to retrieve information on inter-residue and inter-domain cross-correlations, cooperative modes of motion, the location of hinge sites and energy localization spots. The ability of iGNM 2.0 to provide structural dynamics data on the large majority of PDB structures and, in particular, on their biological assemblies makes it a useful resource for establishing the bridge between structure, dynamics and function.


Asunto(s)
Bases de Datos de Proteínas , Modelos Moleculares , Conformación Proteica , ADN/química , Distribución Normal , Estructura Terciaria de Proteína , ARN/química
20.
Biomed Res Int ; 2015: 539238, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26457300

RESUMEN

Although the dynamic motions and peptidyl transferase activity seem to be embedded in the rRNAs, the ribosome contains more than 50 ribosomal proteins (r-proteins), whose functions remain largely elusive. Also, the precise forms of some of these r-proteins, as being part of the ribosome, are not structurally solved due to their high flexibility, which hinders the efforts in their functional elucidation. Owing to recent advances in cryo-electron microscopy, single-molecule techniques, and theoretical modeling, much has been learned about the dynamics of these r-proteins. Surprisingly, allosteric regulations have been found in between spatially separated components as distant as those in the opposite sides of the ribosome. Here, we focus on the functional roles and intricate regulations of the mobile L1 and L12 stalks and L9 and S1 proteins. Conformational flexibility also enables versatile functions for r-proteins beyond translation. The arrangement of r-proteins may be under evolutionary pressure that fine-tunes mass distributions for optimal structural dynamics and catalytic activity of the ribosome.


Asunto(s)
ARN Ribosómico/química , Proteínas Ribosómicas/química , Proteínas Ribosómicas/ultraestructura , Ribosomas/química , Ribosomas/ultraestructura , Regulación Alostérica/fisiología , Animales , Sitios de Unión , Catálisis , Simulación por Computador , Humanos , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Unión Proteica , Conformación Proteica , ARN Ribosómico/fisiología , ARN Ribosómico/ultraestructura , Proteínas Ribosómicas/metabolismo , Ribosomas/fisiología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA