Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Sci Total Environ ; 927: 172229, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38582115

RESUMEN

Combining traditional stable isotopes (δD and δ18O) and triple oxygen isotope (δ17O) is conducive to tracing hydrological cycle processes. The application of triple oxygen isotopes primarily focuses on precipitation, which is lacking in river water and groundwater. In this study, the spatial variations of δD, δ18O, δ17O, d-excess and 17O-excess of river water and groundwater in the Golmud River basin as well as the correlation between them were investigated to elucidate water origin and assess the evaporation influence on water bodies during flood season. Spatial changes in δD, δ18O and δ17O of river water exhibit a decrease-increase-stability pattern contrary to that observed for d-excess, 17O-excess has no distinct trend but is higher at both the source and downstream regions. The results show that river water and groundwater originate from precipitation in the mountainous area, and the meltwater in the source region also contribute to the river water with high d-excess and 17O-excess during flood season. The combination of d-excess and 17O-excess reveal that river water is also affected by evaporation and mixing of river water in tributaries. It was found that the river water is recharged in the mountains, undergoes evaporation in the upstream region and leaks into groundwater in the midstream region, which is recharged by the groundwater and evaporated again in the downstream region. This study could provide a more comprehensive understanding of the potential and value of triple oxygen isotopes in the hydrological cycle.

2.
Environ Res ; 236(Pt 2): 116837, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37544469

RESUMEN

The sustainability of water resources is a major challenge for the Ordos Basin and Loess Plateau of China. The basis of effective water management is an understanding of the water cycle process. This study investigated the surface water-groundwater origins and connectivity using stable isotopes (δD and δ18O) of surface water and groundwater in 11 river basins in the Ordos Basin. It was found that the surface water-groundwater origins and hydraulic connection were characterized by regional differences, mainly induced by climatic characteristics, hydrogeological conditions and human activities. Specifically, the impact of thick loess deposits caused surface water and groundwater to take long time to produce a hydraulic connection. In contrast, areas with thin loess deposits and frequent human activities showed a good connectivity between surface water and groundwater. As for water origins, summer precipitation was a common source of surface water and groundwater in the study area, and groundwater discharge was another source of surface water. However, surface water and groundwater were subjected to different degrees of evaporation during receiving precipitation recharge. Notably, thick loess deposits had an impact on groundwater evaporation because both the recharge of precipitation to groundwater and the discharge of groundwater to surface water took a long time. In addition, it was found that frequent human activities (mining, irrigation and urban construction) could weaken the impact of evaporation. This large-scale analysis provided new insights into the origins and connectivity of surface water and groundwater in areas with thick unsaturated zones for water resources management.


Asunto(s)
Agua Subterránea , Hidrógeno , Humanos , Isótopos de Oxígeno/análisis , Agua , Monitoreo del Ambiente , Isótopos/análisis , Ríos , China
3.
Bioresour Technol ; 379: 129026, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37030417

RESUMEN

In this study, the engineering-oriented three-dimensional (3D) bioanode concept was applied, demonstrating that spiral-stairs-like/rolled carbon felt (SCF/RCF) configurations achieved good performances in air-cathode microbial fuel cells (ACMFCs). With the 3D anodes, ACMFCs generated significantly higher power densities of 1535 mW/m3 (SCF) and 1800 mW/m3 (RCF), compared with that of a traditional flat carbon felt anode (FCF, 315 mW/m3). The coulombic efficiency of 15.39 % at SCF anode and 14.34 % at RCF anode also is higher than the 7.93 % at FCF anode. The 3D anode ACMFCs exhibited favorable removal of chemical oxygen demand (96 % of SCF and RCF) and total nitrogen (97 % of SCF, 99 % of RCF). Further results show that three-dimensional anode structures could enrich more electrode surface biomass and diversify the biofilm microbial communities for promoting bioelectroactivity, denitrification, and nitrification. These results demonstrate that three-dimensional anodes with active biofilm is a promising strategy for creating scalable MFCs-based wastewater treatment system.


Asunto(s)
Fuentes de Energía Bioeléctrica , Desnitrificación , Carbono , Fibra de Carbono , Electricidad , Electrodos , Nitrógeno
4.
Sci Total Environ ; 864: 160981, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36539094

RESUMEN

Knowledge of moisture sources is of great significance for the understanding of groundwater recharge and hydrological cycle. However, it is often difficult to identify the moisture sources and evolution especially in the areas with complex climate system. Isotopes in groundwater that acts as a climate archive provide a unique perspective on the moisture sources and evolution. In this study, the stable isotopes (2H, 18O) of precipitation and groundwater, radioactive isotope (14C) of groundwater, water vapor trajectory modeling (HYSPLIT models) and d-excess based on mass balance model were employed to reveal the groundwater origin, moisture source and evolution in the northeastern Qaidam Basin, northeast Tibetan Plateau, China. The stable isotopic compositions indicate that the precipitation in the mountainous areas is the main origin of groundwater. The spatiotemporal variation of groundwater d-excess together with HYSPLIT modeling suggest that the moisture sources in the northeastern Qaidam Basin have been controlled by the Westerlies and did not alter obviously with time, whereas Delingha with relatively low elevation is influenced by both the Westerlies and local recycled moisture. More than 80 % water vapor derives from the northwest of study area for the plain and mountainous area, except for the mountainous area of Delingha, where approximately 23 % water vapor originates from the surface water evaporation in the plain area. The water vapor with high d-excess formed in the plain area is transported to the mountainous area and mixed with advected water vapor, resulting in the large d-excess of groundwater in Delingha. The moisture recycling fraction in precipitation for the mountainous area of Delingha is estimated to be about 2.0 % by using d-excess-based mass balance model. The results of the study could be helpful to the understanding of hydrological cycle of the area and elsewhere.

5.
Sci Total Environ ; 856(Pt 1): 159082, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36174696

RESUMEN

Nitrate promotes anodic denitrification and fasts organic matter removal in microbial fuel cells (MFCs). However, it suffers from poor total nitrogen (TN) removal and current recovery. In this study, some novel electroactive nitrifying/denitrifying bacteria (ENDB) were introduced in a single chambered air-cathode MFC to investigate the performance of this device and the microbial community shift by adding nitrate. Results showed a similar disturbance in current output by adding nitrate during a short-term operation. However, a stable and reproducible current increase was achieved in the continuous experiment. A maximum current of 0.76 A m-3 and a maximum TN removal of >99 % were accomplished. The corresponding corrected coulombic efficiency was approximately 18 %. Under repeatable batches, a sharp decrease in chemical oxygen demand (COD) with feeding nitrate confirmed the temporary competition on electron donors through heterotrophic denitrification. The later current increase and nitrite detection occurring without metabolized COD could be considered evidence of electroactive anodic nitrification. The ENDB biofilm successfully coupled mixotrophic denitrification and electroactive anodic nitrification. It eventually promoted TN removal. In the process, genera Pseudoxanthomonas, Thauera, and Pseudomonas were enriched in the anodic ENDB biofilms. Cyclic voltammetry data confirmed the promotion of the electron transfer process by biofilms. The bacterial function predication revealed that the genes related to nitrogen removal and electron transfer were upregulated. Therefore, mixotrophic denitrification and electroactive anodic nitrification processes facilitated power recovery with the high efficiency of pollutant removal, finally ensuring water body security.


Asunto(s)
Desnitrificación , Nitrificación , Nitrógeno/metabolismo , Nitratos/metabolismo , Electrodos , Bacterias/metabolismo , Óxidos de Nitrógeno/metabolismo
6.
Bioelectrochemistry ; 145: 108097, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35313237

RESUMEN

Anodic ammonium oxidation mainly focuses on autotrophic process, and the removal combined with organic matter oxidation is still unclear in microbial electrolysis cell (MEC). Here, a stainless-steel tank is constructed as an MEC for anaerobic ammonium oxidation and organic matter removal. Results show that MEC increases ammonium oxidation from 3.83 ± 2.51% to 32.90 ± 3.39%, and the organic matter removal rises from 75.69 ± 0.59% to 92.12 ± 0.57%, and the energy consumption is only 0.80 ± 0.09 kWh kg-1N, indicating an energy-efficient approach for simultaneous ammonium and carbon removal. Cyclic voltammetry reveals two pairs of oxidative peaks (-0.4 V and + 0.6 V) which demonstrate the electrochemical activity of biofilms for organic matter and ammonium oxidation, respectively. 16S rRNA gene analysis clarifies the anodic biofilm mainly enriched by the genus of Azoarcus, Hydrogenophaga and Paracoccus. Further analysis indicates that anodic potential controls the community succession of heterotrophic and hydrogenotrophic denitrifying bacteria, and then regulates the nitrogen and carbon removal processes, which extend the insights of anodic anaerobic ammonium oxidation coupling to denitrification under organic conditions.


Asunto(s)
Compuestos de Amonio , Nitrógeno , Compuestos de Amonio/análisis , Anaerobiosis , Reactores Biológicos/microbiología , Carbono , Desnitrificación , Oxidación-Reducción , ARN Ribosómico 16S/genética , Acero Inoxidable , Aguas Residuales/análisis
7.
Chemosphere ; 297: 134038, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35183587

RESUMEN

Owing to membrane penetration, a novel route of nitrogen removal was proposed in a dual-chamber microbial fuel cell with a proton exchange membrane (PEM). The results showed that NH4+-N rapidly migrated across PEM with a mass transfer coefficient (KA) of 1.79 ± 0.51 × 10-4 cm s-1, 50% of which was oxidized to NO3--N in the cathode chamber, then the remainder being eliminated by short-cut nitrification/denitrification. Meanwhile, NO3--N went across the PEM again with a low KA of 5.50 ± 0.24 × 10-6 cm s-1, and was subsequently reduced via anodic denitrification. In the anode, the functional microorganisms were divided into exoelectrogenic bacteria (46.2%) and denitrifying bacteria (37.3%), while the dominated bacteria were mainly affiliated with nitrifying bacteria (19.6%) and aerobic denitrifying bacteria (52.9%) in the cathode. These findings provide a new insight into nitrogen removal during bioelectrochemical treatment of actual wastewater.


Asunto(s)
Fuentes de Energía Bioeléctrica , Reactores Biológicos , Desnitrificación , Nitrificación , Nitrógeno/análisis , Aguas Residuales
8.
Environ Res ; 210: 112985, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35192804

RESUMEN

Trichloroacetic acid (TCA), a toxic substance produced in the disinfection process of wastewater treatment plants, will accumulate in the receiving water. The detection of TCA in the water can achieve the purpose of early warning. However, currently there are few reports on microbial sensors used for TCA detection, and the characteristics of their microbial communities are still unclear. In this work, a toxicity monitoring microbial system (TMMS) with nitrifying biofilm as a sensing element and cathode oxygen reduction as a current signal was successfully constructed for TCA detection. The current and nitrification rate showed a linear relationship with low TCA concentration from 0 to 50 µg/L (R2current = 0.9892, R2nitrification = 0.9860), and high concentration range from 50 to 5000 µg/L (R2current = 0.9883, R2nitrification = 0.9721). High-throughput sequencing revealed that the TMMS was composed of autotrophic/heterotrophic nitrifying and denitrifying microorganisms. Further analysis via symbiotic relationship network demonstrated that Arenimonas and Hyphomicrobium were the core nodes for maintaining interaction between autotropic and heterotrophic nitrifying bacteria. Kyoto Encyclopedia of Genes and Genomes analysis showed that after adding TCA to TMMS, the carbon metabolism and the abundance of the tricarboxylic acid cycle pathway were reduced, and the activity of microorganisms was inhibited. TCA stress caused a low abundance of nitrifying and denitrifying functional enzymes, resulting in low oxygen consumption in the nitrification process, but more oxygen supply for cathode oxygen reduction. This work explored a novel sensor combined with electrochemistry and autotrophic/heterotrophic nitrification, which provided a new insight into the development of microbial monitoring of toxic substances.


Asunto(s)
Nitrificación , Ácido Tricloroacético , Biopelículas , Reactores Biológicos , Nitrógeno/metabolismo , Oxígeno , Agua
9.
Bioelectrochemistry ; 144: 107997, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34801809

RESUMEN

Aerobic biocathodes are effective construct for the simultaneous nitrification and denitrification, but the disturbance of cathodic oxygen reduction on ammonia oxidation and denitrification remains unclear. In this study, we revealed the oxygen reduction peak at -0.4 V (versus silver/silver chloride) by cyclic voltammetry analysis at a cathode without a biofilm. The reduction peak, however, showed a right shift from -0.4 to -0.3 V for the biocathode, indicating that the aerobic biocathode could simultaneously perform traditional nitrification and cathode oxygen reduction. Therefore, different electrode potentials ranging from -0.5 to -0.1 V were designed for regulating the ammonia oxidation rate, and the results showed that the highest oxidation rate reached 3.08 mg/h/L at a potential of -0.2 V under a low-aeration rate of 5 mL/min. High-throughput sequencing showed that Nitrosomonas and Rhodococcus were the dominant nitrogen removal genera in the biocathode, and the abundance of Devosia was related to the interactions between the aeration rate and the electrode potential. Furthermore, the amoC and hao genes responded to aeration and electrode potential regulation, and -0.2 V was more suitable for promoting the denitrification process under low-aeration conditions. Therefore, these findings provided new insights on cathodic potential control for ammonia oxidation and nitrogen removal as well as for the regulation of microbial communities.


Asunto(s)
Desnitrificación
10.
Front Pediatr ; 9: 725231, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34532305

RESUMEN

The mental retardation-55 with seizures (MRD55) is a rare genetic disease characterized by developmental delay, intellectual disability, language delay and multiple types of epileptic seizures. It is caused by pathogenic variants of the NUS1 gene, which encodes Nogo-B receptor (NgBR), a necessary subunit for the glycosylation reactions in mammals. To date, 25 disease-causing mutations of NUS1 have been reported, which are responsible for various diseases, including dystonia, Parkinson's disease, developmental and epileptic encephalopathy as well as congenital disorder of glycosylation. In addition, only 9 of these mutations were reported with detailed clinical features. There are no reports about Chinese cases with MRD55. In this study, a novel, de novo pathogenic variant of NUS1 (c.51_54delTCTG, p.L18Tfs*31) was identified in a Chinese patient with intellectual disability and epileptic seizures. This pathogenic variant resulted in truncated NgBR proteins, which might be the cause of the clinical features of the patient. Oxcarbazepine was an effective treatment for improving speech and movement of the patient, who consequently presented with no seizure. With this novel pathogenic variant found in NUS1, we expand the genotype spectrum of MRD55 and provide valuable insights into the potential genotype-phenotype correlation.

11.
Bioresour Technol ; 339: 125604, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34303104

RESUMEN

Simultaneous nitrification/denitrification (SND) can efficiently deplete NH4+ by using air-exposed biocathode (AEB) in bioelectrochemical reactors. However, the fluctuation of wastewater adversely affects the functional biofilms and therefore the performance. In this work, four up-flow bioelectrochemical reactors (UBERs) with some novel inocula were investigated to improve domestic wastewater treatment. The UBERs exhibited favorable removal of chemical oxygen demand (COD, 95%), NH4+-N (99%), and total nitrogen (TN, 99%). The maximum of current (2.7 A/m3), power density (136 mW/m3) and coulombic efficiency (20.5%) were obtained. Cyclic voltammetry analysis showed all the electrodes were of diversified catalytic reactions. Illumina pyrosequencing showed the predominant Ignavibacterium, Thauera, Nitrosomonas, Geminicoccus and Nitrospira were in all electrodes, contributing functional biofilms performing SND, comammox, and bioelectrochemical reactions. FAPROTAX analysis confirmed twenty-one functional groups with obvious changes related to chemoheterotrophy, respiration/oxidation/denitrification of nitrite and nitrate. Comfortingly, such novel diversified consortia in UBERs enhance the microbial metabolisms to treat domestic wastewater.


Asunto(s)
Nitrificación , Aguas Residuales , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Desnitrificación , Nitrógeno/análisis
12.
Bioelectrochemistry ; 142: 107889, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34329844

RESUMEN

Alternative method should be found to solve the ammonia accumulation in anaerobic digestion. Herein, electrode-dependent ammonium oxidation was successfully achieved in anaerobic single-chambered microbial electrolysis cells (MECs)under different low C/N ratios (0, 1, and 1.5), with an applied voltage of 0.6 V as well as an initial NH4+-N and NO3--N concentration of 500 and 300 mg/L. The nitrogen removal performance of MECs and the controls indicated that applying a voltage stimulated nitrogen removal under low C/N ratios of 0, 1, and 1.5. However, the remaining organic carbon in MEC with a relatively higher C/N ratio of 3 inhibited the ammonium oxidation. Current changes and cyclic voltammetry demonstrated that the bioanode with several bioelectrochemical activities could promote ammonium oxidation. The dominant genera Truepera, Aquamicrobium, Nitrosomonas, Arenimonas, Comamonas, and Cryobacterium enriched on both electrodes could be the key functional taxa in MECs with C/N ratios of 0, 1, and 1.5. The remaining sodium acetate in MEC with C/N ratio of 3 inhibits microbial community structure and relative abundance, which may adversely affected nitrogen removal. Further caculation showed that nitrogen balance was essentially achieved, while electron balance was disrupted since electrons may be consumed through NO3--N recycle and cell synthesis, and finally caused low coulombic efficiency.


Asunto(s)
Bacterias/química , Biodegradación Ambiental , Fuentes de Energía Bioeléctrica/microbiología , Reactores Biológicos/microbiología , Microbiota , Aguas Residuales/química
13.
Waste Manag ; 131: 61-71, 2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34107374

RESUMEN

Leachates and landfill gas (LFG) are the major problems for closed landfills (CL) and cause significant threats to receiving waterbody and ambient air quality. In this study, a field pilot-scale CL with ex situ nitritation/in situ denitritation process was constructed and operated continuously under wide temperature variations. The effect of low temperature on leachate treatment, and LFG content was studied. Results showed that the combined process can efficiently remove nitrogen and organic matters from leachate, and change LFG content under low-temperature condition. In the ex situ nitritaion, maximum removal efficiencies of ammonia and chemical oxygen demand (COD) were over 99% and 85%, respectively. The loading rate of nitrogen and COD reached 0.5 kg N m-3 d-1 and 0.7 kg COD m-3 d-1, respectively. The inhibitions of free ammonia (FA) and free nitrous acid (FNA), and low temperature were the key factors affecting nitritation. With recirculating nitrified leachate, total oxidized nitrogen (TON) was completely reduced, and the refuse decomposition was accelerated. Denitritation was the main reaction responsible in the CL. Additionally, methane content was observed lowly at non-inhibitory TON loading rate of 5.8 ± 3.7 g N ton-1 TS d-1. This decrease was not caused by the increased of TON loading, but a carbon source competition by denitrificans. The estimated COD consumption and methane reduction were 55.0 kg d-1 by TON reduction, and 20 m3 d-1, respectively. Hence, this study served a potential strategy for postclosure care of landfills under low temperature variation.


Asunto(s)
Reactores Biológicos , Contaminantes Químicos del Agua , Nitritos/análisis , Nitrógeno/análisis , Temperatura , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua/análisis
14.
Sci Total Environ ; 788: 147652, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34023598

RESUMEN

Air-cathode microbial fuel cells (ACMFCs) can extract available electrons from the low C/N ratio wastewater (LCNW) for pollutant degradation and power generation. However, the multiple effects of operating parameters and their relationship between the performances and parameters are still lacking. In this study, several ACMFCs for simultaneous nitritation/denitritation (SND) and energy recovery were constructed and evaluated in terms of chemical oxygen demand (COD), NH4+-N, C/N ratio, phosphate buffer solution (PBS), and external resistance (Rext), and several derived parameters (e.g., organic loading rate (OLR), nitrogen loading rate (NLR)). Results indicated that ACMFCs could be used to treat LCNW successfully with high pollutant removal rates and sustainable current generation. Maximum removal efficiencies of 94% COD, 92% NH4+-N, and 92% total nitrogen (TN) were achieved. A maximum power density of 1400 mW m-2 and columbic efficiency of 69.2% were also obtained at a low C/N ratio of 1.7-2.6. Low C/N ratios promoted SND by balancing nitritation and denitritation. The microbial community and their predicated function results showed considerable nitrifiers and denitrificans were enriched in the ACMFCs, contributing to SND and power recovery. Further analyses showed that the NH4+-N could inhibit SND, but PBS and Rext had no obvious effects on this outcome. Co-occurrence network analysis demonstrated that power is positively correlated with COD and Rext; strong correlations between organic removal and COD, and between nitrogen removal and ammonia, conductivity, and C/N ratio were also noted. Overall, the appropriate control of such parameters is necessary to achieve efficient SND in ACMFCs for LCNW treatment.


Asunto(s)
Fuentes de Energía Bioeléctrica , Aguas Residuales , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Desnitrificación , Electrodos , Nitrógeno
15.
Sci Total Environ ; 748: 141379, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32798873

RESUMEN

Urine wastewater is used as fuel in microbial fuel cells to generate power for several applications. However, the knowledge on the removal efficiencies of pollutants and bacterial composition of electrode biofilm is still lacking. In this study, two air-exposed biocathode microbial fuel cells (AEB-MFCs) were constructed and some nitrogen-removing consortium were inoculated to fabricate multifunctional AEBs for urine treatment and energy recovery. Results demonstrated that urine wastewater can be degraded through one-pot degradation without positive aeration. The removal efficiencies of NH4+-N, total nitrogen and chemical oxygen demand reached 86.8% ± 1.5%, 62.7% ± 2.3%, and 52.7% ± 1.6% respectively. Cyclic voltammetry illustrated several catalytic activities related to C/N metabolism occurred in both biofilms and varied with the operation continuing in a single stable cycle. In addition, the community structure analysis revealed that many active microorganisms, including nitrogen-removing bacteria, heterotrophs, and electrochemically active bacteria were enriched in both electrodes, especially many halophilic nitrifiers/denitrifiers occupied in AEBs and directed the system toward the integrated pathways of halophilic nitrogen removal and energy recovery. This study presented a novel method for the energy conversion and effective degradation of urine, which can serve as a promising technology for urine wastewater treatment.


Asunto(s)
Fuentes de Energía Bioeléctrica , Nitrificación , Biopelículas , Reactores Biológicos , Desnitrificación , Electrodos , Nitrógeno/análisis , Aguas Residuales
16.
Bioresour Technol ; 306: 123120, 2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32171176

RESUMEN

Biofouling frequently causes catalyst deterioration at the cathode of microbial fuel cells (MFCs). A biofilm-covered Pt/C cathode (BPC) was fabricated via in situ cultivation of a biofilm on a Pt/C cathode (PC) in a dual-chambered MFC, which enables effective removal of NH4+-N and copious generation of electricity. Experimental results show 99% NH4+-N removal by the nitrifying bacteria that constitute 35.7% of all microorganisms on the BPC and a maximum BPC-MFC power density of 0.97 W/m2, which is comparable to that of PC-MFCs (0.99 W/m2). BPC biofilm size is restricted by the limited amount of organic material in the cathode chamber, which constrains the biomass to less than 0.3 g protein /m2. The bifunctional-cathode equipped MFC shows great promise as an energy-saving technology for wastewater treatment in the future.

17.
Ecotoxicol Environ Saf ; 185: 109685, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31541947

RESUMEN

Food security and human health can be seriously affected by heavy metal and metalloid (HM) pollution of soil. In this study, the risks posed by HMs and microbial community responses to HM pollution of agricultural soil in southwestern China were investigated. The C, N, P, and S (nutrients) concentrations were 12040.7-15912.7, 1298.06-1832.01, 750.91-2050.35, and 269.17-2115.52 mg/kg, respectively. The As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn concentrations were 3.11-8.20, 1.85-6.56, 22.83-43.96, 11.21-23.30, 0.08-0.81, 11.02-22.97, 24.07-42.96, and 193.63-698.39 mg/kg, respectively. Interpolation analysis indicated that the nutrient and HM concentrations varied spatially rather strongly. The concentrations of all of the elements were higher in soil from the northern sampling sites than in soil from the other sites. HMs in soil were found to pose high levels of risk (RI 898.85, i.e., >600). Cd contributed more than the other HMs to the risk assessment values (ErCd 293.72-1031.94), so was the most serious contaminant. Microbial diversity decreased over time in soil with high HM concentrations (plot S2) and was lower than in soil with low HM concentrations (plot S8). The nutrient and HM concentrations correlated with the microbial community characteristics. Proteobacteria, Acidobacteria, and Chloroflexi were (in decreasing order) the dominant bacterial phyla. We speculate that these phyla may be strongly resistant to HMs. The fourth most common phylum was Actinobacteria. Bacteria in this phylum could be used as biological indicators of the HM pollution status. Soil micro-ecosystems can self-regulate. HM stress will affect the evolution of soil microorganisms and relevant functional genes. The spatiotemporal variability in the microbial community responses to HMs and the spatial analysis and ecological risk assessment results will be useful reference data for the remediation of HM-polluted soil.


Asunto(s)
Monitoreo del Ambiente/métodos , Granjas , Metaloides/análisis , Metales Pesados/análisis , Microbiota/efectos de los fármacos , Contaminantes del Suelo/análisis , Agricultura , China , Humanos , Medición de Riesgo , Suelo/química , Microbiología del Suelo/normas , Análisis Espacial
18.
J Environ Sci (China) ; 66: 216-224, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29628090

RESUMEN

To investigate the effect of air-exposed biocathode (AEB) on the performance of single-chamber microbial fuel cell (SCMFC), wastewater quality, bioelectrochemical characteristics and the electrode biofilms were researched. It was demonstrated that exposing the biocathode to air was beneficial to nitrogen removal and current generation. In Test 1 of 95% AEB, removal rates of ammonia, total nitrogen (TN) and chemical oxygen demand (COD) reached 99.34%±0.11%, 99.34%±0.10% and 90.79%±0.12%, respectively. The nitrogen removal loading rates were 36.38gN/m3/day. Meanwhile, current density and power density obtained at 0.7A/m3 and 104mW/m3 respectively. Further experiments on open-circuit (Test 2) and carbon source (Test 3) indicated that this high performance could be attributed to simultaneous biological nitrification/denitrification and aerobic denitrification, as well as bioelectrochemical denitrification. Results of community analysis demonstrated that both microbial community structures on the surface of the cathode and in the liquid of the chamber were different. The percentage of Thauera, identified as denitrifying bacteria, maintained at a high level of over 50% in water, but decreased gradually in the AEB. Moreover, the genus Nitrosomonas, Alishewanella, Arcobacter and Rheinheimera were significantly enriched in the AEB, which might contribute to both enhancement of nitrogen removal and electricity generation.


Asunto(s)
Fuentes de Energía Bioeléctrica , Thauera , Amoníaco/análisis , Biopelículas , Reactores Biológicos , Desnitrificación , Electricidad , Electrodos , Nitrificación , Nitrógeno/análisis
19.
Extremophiles ; 19(1): 101-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25138279

RESUMEN

Multidrug resistance (MDR) transporters are capable of secreting structurally and functionally unrelated toxic compounds from the cell. Among this group are ATP-binding cassette (ABC) transporters. These membrane proteins are typically arranged as either hetero- or homo-dimers of ABC half-transporters with each subunit consisting of a membrane domain fused at the C-terminus to an ATP-binding domain, or as full transporters in which the two subunits are fused into a single polypeptide. The saci_2123 gene of the thermoacidophilic archaeon Sulfolobus acidocaldarius is the only gene in the genome that encodes an ATP-binding cassette half-transporter, while a homologous gene is present in the genomes of S. solfataricus, S. tokodaii and S islandicus. Saci_2123 shares homology with well-characterized bacterial and mammalian MDR transporters. The saci_2132 gene is up-regulated when cells are exposed to drugs. A deletion mutant of saci_2132 was found to be more vulnerable to a set of toxic compounds, including detergents, antibiotics and uncouplers as compared to the wild-type strain, while the drug resistance could be restored through the plasmid-based expression of saci_2132. These data demonstrate that Saci_2132 is an archaeal ABC-MDR transporter and therefore it was termed Smr1 (Sulfolobus multidrug resistance transporter 1).


Asunto(s)
Adenosina Trifosfato/metabolismo , Genes Arqueales , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Sulfolobus acidocaldarius/metabolismo , Secuencia de Aminoácidos , Antiinfecciosos/química , Transporte Biológico , Biología Computacional , Detergentes/química , Farmacorresistencia Microbiana , Resistencia a Múltiples Medicamentos , Eliminación de Gen , Perfilación de la Expresión Génica , Datos de Secuencia Molecular , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Plásmidos , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , ARN de Archaea/genética , Homología de Secuencia de Aminoácido , Sulfolobus acidocaldarius/genética , Regulación hacia Arriba
20.
Extremophiles ; 18(2): 331-9, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24399085

RESUMEN

The majority of Crenarchaeota utilize the cell division system (Cdv) to divide. This system consists of three highly conserved genes, cdvA, cdvB and cdvC that are organized in an operon. CdvC is homologous to the AAA-type ATPase Vps4, involved in multivesicular body biogenesis in eukaryotes. CdvA is a unique archaeal protein that interacts with the membrane, while CdvB is homologous to the eukaryal Vps24 and forms helical filaments. Most Crenarcheota contain additional CdvB paralogs. In Sulfolobus acidocaldarius these are termed CdvB1-3. We have used a gene inactivation approach to determine the impact of these additional cdvB genes on cell division. Independent deletion mutants of these genes were analyzed for growth and protein localization. One of the deletion strains (ΔcdvB3) showed a severe growth defect on plates and delayed growth on liquid medium. It showed the formation of enlarged cells and a defect in DNA segregation. Since these defects are accompanied with an aberrant localization of CdvA and CdvB, we conclude that CdvB3 fulfills an important accessory role in cell division.


Asunto(s)
Proteínas Arqueales/metabolismo , División Celular , Eliminación de Gen , Sulfolobus acidocaldarius/genética , Proteínas de Transporte Vesicular/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/genética , Datos de Secuencia Molecular , Transporte de Proteínas , Sulfolobus acidocaldarius/fisiología , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA