Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
J Colloid Interface Sci ; 677(Pt A): 655-664, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39116563

RESUMEN

Germanium based nanomaterials are very promising as the anodes for the lithium ion batteries since their large specific capacity, excellent lithium diffusivity and high conductivity. However, their controllable preparation is still very difficult to achieve. Herein, we facilely prepare a unique carbon coating Ge nanospheres with a cubic hollow structure (Ge@C) via a hydrothermal synthesis and subsequent pyrolysis using low-cost GeO2 as precursors. The hollow Ge@C nanostructure not only provides abundant interior space to alleviate the huge volumetric expansion of Ge upon lithiation, but also facilitates the transmission of lithium ions and electrons. Moreover, experiment analyses and density functional theory (DFT) calculations unveil the excellent lithium adsorption ability, high exchange current density, low activation energy for lithium diffusion of the hollow Ge@C electrode, thus exhibiting significant lithium storage advantages with a large charge capacity (1483 mAh/g under 200 mA g-1), distinguished rate ability (710 mAh/g under 8000 mA g-1) as well as long-term cycling stability (1130 mAh/g after 900 cycles under 1000 mA g-1). Therefore, this work offers new paths for controllable synthesis and fabrication of high-performance Ge based lithium storage nanomaterials.

2.
ACS Nano ; 18(34): 23579-23598, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39150904

RESUMEN

Considering the profound impact of structure on heterojunction catalysts, the rational design of emerging catalysts with optimized energy band structures is required for antitumor efficiency. Herein, we select titanium nitride (TiN) and Pt to develop a multifunctional Schottky heterojunction named Pt/H-TiN&SRF (PHTS) nanoparticles (NPs) with a narrowed bandgap to accomplish "four birds with one stone" involving enzyo/sono/photo three modals and additional ferroptosis. The in situ-grown Pt NPs acted as electron traps that can cause the energy band to bend upward and form a Schottky barrier, thereby facilitating the separation of electron/hole pairs in exogenous stimulation catalytic therapy. In addition, endogenous catalytic reactions based on peroxidase (POD)- and catalase (CAT)-mimicking activities can also be amplified, triggering intense oxidative stress, in which CAT-like activity decomposes endogenous H2O2 into O2 alleviating hypoxia and provides reactants for sonodynamic therapy. Moreover, PHTS NPs can elicit mild photothermal therapy with boosted photothermal properties as well as ferroptosis with loaded ferroptosis inducer sorafenib for effective tumor ablation and apoptosis-ferroptosis synergistic tumor inhibitory effect. In summary, this paper proposes an attractive design for antitumor strategies and highlights findings for heterojunction catalytic therapy with potential in tumor theranostics.


Asunto(s)
Antineoplásicos , Titanio , Animales , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Humanos , Titanio/química , Titanio/farmacología , Ferroptosis/efectos de los fármacos , Apoptosis/efectos de los fármacos , Platino (Metal)/química , Platino (Metal)/farmacología , Sorafenib/farmacología , Sorafenib/química , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Terapia Fototérmica , Nanopartículas/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Ratones Endogámicos BALB C
3.
Adv Sci (Weinh) ; : e2404146, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136080

RESUMEN

Piezocatalytic therapy (PCT) based on 2D layered materials has emerged as a promising non-invasive tumor treatment modality, offering superior advantages. However, a systematic investigation of PCT, particularly the mechanisms underlying the reactive oxygen species (ROS) generation by 2D nanomaterials, is still in its infancy. Here, for the first time, biodegradable piezoelectric 2D bilayer nickel-iron layered double hydroxide (NiFe-LDH) nanosheets (thickness of ≈1.86 nm) are reported for enhanced PCT and ferroptosis. Under ultrasound irradiation, the piezoelectric semiconducting NiFe-LDH exhibits a remarkable ability to generate superoxide anion radicals, due to the formation of a built-in electric field that facilitates the separation of electrons and holes. Notably, the significant excitonic effect in the ultrathin NiFe-LDH system enables long-lived excited triplet excitons (lifetime of ≈5.04 µs) to effectively convert triplet O2 molecules into singlet oxygen. Moreover, NiFe-LDH exhibited tumor microenvironment (TME)-responsive peroxidase (POD)-like and glutathione (GSH)-depleting capabilities, further enhancing oxidative stress in tumor cells and inducing ferroptosis. To the best of knowledge, this is the first report on piezoelectric semiconducting sonosensitizers based on LDHs for PCT and ferroptosis, providing a comprehensive understanding of the piezocatalysis mechanism and valuable references for the application of LDHs and other 2D materials in cancer therapy.

4.
Nanomicro Lett ; 16(1): 240, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980475

RESUMEN

Single-atom materials have demonstrated attractive physicochemical characteristics. However, understanding the relationships between the coordination environment of single atoms and their properties at the atomic level remains a considerable challenge. Herein, a facile water-assisted carbonization approach is developed to fabricate well-defined asymmetrically coordinated Co-N4-O sites on biomass-derived carbon nanofiber (Co-N4-O/NCF) for electromagnetic wave (EMW) absorption. In such nanofiber, one atomically dispersed Co site is coordinated with four N atoms in the graphene basal plane and one oxygen atom in the axial direction. In-depth experimental and theoretical studies reveal that the axial Co-O coordination breaks the charge distribution symmetry in the planar porphyrin-like Co-N4 structure, leading to significantly enhanced dielectric polarization loss relevant to the planar Co-N4 sites. Importantly, the film based on Co-N4-O/NCF exhibits light weight, flexibility, excellent mechanical properties, great thermal insulating feature, and excellent EMW absorption with a reflection loss of - 45.82 dB along with an effective absorption bandwidth of 4.8 GHz. The findings of this work offer insight into the relationships between the single-atom coordination environment and the dielectric performance, and the proposed strategy can be extended toward the engineering of asymmetrically coordinated single atoms for various applications.

5.
Small ; : e2405174, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39072996

RESUMEN

Two-dimensional (2D) van der Waals heterostructures endow individual 2D material with the novel functional structures, intriguing compositions, and fantastic interfaces, which efficiently provide a feasible route to overcome the intrinsic limitations of single 2D components and embrace the distinct features of different materials. However, the construction of 2D heterostructures with uniform heterointerfaces still poses significant challenges. Herein, a universal in-situ interfacial growth strategy is designed to controllably prepare a series of MXene-based tin selenides/sulfides with 2D van der Waals homogeneous heterostructures. Molten salt etching by-products that are usually recognized as undesirable impurities, are reasonably utilized by us to efficiently transform into different 2D nanostructures via in-situ interfacial growth. The obtained MXene-based 2D heterostructures present sandwiched structures and lamellar interlacing networks with uniform heterointerfaces, which demonstrate the efficient conversion from 3D composite to 2D heterostructures. Such 2D heterostructures significantly enhance charge transfer efficiency, chemical reversibility, and overall structural stability in the electrochemical process. Taking 2D-SnSe2/MXene anode as a representative, it delivers outstanding lithium storage performance with large reversible capacities and ultrahigh capacity retention of over 97% after numerous cycles at 0.2, 1.0, and 10.0 A g-1 current density, which suggests its tremendous application potential in lithium-ion batteries.

6.
ChemSusChem ; : e202301807, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847187

RESUMEN

Sn and C nanocomposites are ideal anode materials for high-energy and high-power density lithium ion batteries. However, their facile and controllable synthesis for practical applications is still a critical challenge. In this work, a facile one-step method is developed to controllably synthesize ultrafine Sn nanocrystals (< 5 nm) loaded on carbon black (Sn@C) through Na reducing SnCl4 by mechanical milling. Different from traditional up-down mechanical milling method, this method utilizes mechanical milling to trigger bottom-up reduction reaction of SnCl4. The in-situ formed Sn nanocrystals directly grow on carbon black, which results in the homogeneous composite and the size control of Sn nanocrystals. The obtained Sn@C electrode is revealed to possesses large lithium diffusion coefficient, low lithiation energy barrier and stable electrochemical property during cycle, thus showing excellent lithium storage performance with a high reversible capacity (942 mAh g-1 at a current density of 100 mA g-1), distinguished rate ability (480 mAh g-1 at 8000 mA g-1) and superb cycling performance (730 mAh g-1 at 1000 mA g-1 even after 1000 cycles).

7.
Adv Healthc Mater ; 13(22): e2400591, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38861753

RESUMEN

Calcium overload can lead to tumor cell death. However, because of the powerful calcium channel excretory system within tumor cells, simplistic calcium overloads do not allow for an effective antitumor therapy. Hence, the nanoparticles are created with polyethylene glycol (PEG) donor-modified calcium phosphate (CaP)-coated, manganese-doped hollow mesopores Prussian blue (MMPB) encapsulating glucose oxidase (GOx), called GOx@MMPB@CaP-PEG (GMCP). GMCP with a three-mode enhancement of intratumor reactive oxygen species (ROS) levels is designed to increase the efficiency of the intracellular calcium overload in tumor cells to enhance its anticancer efficacy. The released exogenous Ca2+ and the production of cytotoxic ROS resulting from the perfect circulation of the three-mode ROS outbreak generation that Fenton/Fenton-like reaction and consumption of glutathione from Fe2+/Fe3+and Mn2+/Mn3+ circle, and amelioration of hypoxia from MMPB-guided and GOx-mediated starvation therapy. Photothermal efficacy-induced heat generation owing to MMPB accelerates the above reactions. Furthermore, abundant ROS contribute to damage to mitochondria, and the calcium channels of efflux Ca2+ are inhibited, resulting in a calcium overload. Calcium overload further increases ROS levels and promotes apoptosis of tumor cells to achieve excellent therapy.


Asunto(s)
Fosfatos de Calcio , Calcio , Ferrocianuros , Nanocompuestos , Especies Reactivas de Oxígeno , Ferrocianuros/química , Especies Reactivas de Oxígeno/metabolismo , Humanos , Calcio/metabolismo , Animales , Nanocompuestos/química , Ratones , Fosfatos de Calcio/química , Línea Celular Tumoral , Glucosa Oxidasa/metabolismo , Glucosa Oxidasa/química , Ratones Endogámicos BALB C , Polietilenglicoles/química , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/terapia
8.
Nano Lett ; 24(26): 8071-8079, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38901035

RESUMEN

Single-atom nanozymes (SANs) are considered to be ideal substitutes for natural enzymes due to their high atom utilization. This work reported a strategy to manipulate the second coordination shell of the Ce atom and reshape the carbon carrier to improve the oxidase-like activity of SANs. Internally, S atoms were symmetrically embedded into the second coordination layer to form a Ce-N4S2-C structure, which reduced the energy barrier for O2 reduction, promoted the electron transfer from the Ce atom to O atoms, and enhanced the interaction between the d orbital of the Ce atom and p orbital of O atoms. Externally, in situ polymerization of mussel-inspired polydopamine on the precursor helps capture metal sources and protects the 3D structure of the carrier during pyrolysis. On the other hand, polyethylene glycol (PEG) modulated the interface of the material to enhance water dispersion and mass transfer efficiency. As a proof of concept, the constructed PEG@P@Ce-N/S-C was applied to the multimodal assay of butyrylcholinesterase activity.


Asunto(s)
Cerio , Cerio/química , Polietilenglicoles/química , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Butirilcolinesterasa/química , Butirilcolinesterasa/metabolismo , Polímeros/química , Indoles/química , Oxígeno/química , Oxidación-Reducción
9.
Nano Lett ; 24(26): 8008-8016, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38912749

RESUMEN

Piezoelectric dynamic therapy (PzDT) is an effective method of tumor treatment by using piezoelectric polarization to generate reactive oxygen species. In this paper, two-dimensional Cu-doped BiOCl nanosheets with surface vacancies are produced by the photoetching strategy. Under ultrasound, a built-in electric field is generated to promote the electron and hole separation. The separated carriers achieve O2 reduction and GSH oxidation, inducing oxidative stress. The bandgap of BiOCl is narrowed by introducing surface oxygen vacancies, which act as charge traps and facilitate the electron and hole separation. Meanwhile, Cu doping induces chemodynamic therapy and depletes GSH via the transformation from Cu(II) to Cu(I). Both in vivo and in vitro results confirmed that oxidative stress can be enhanced by exogenous ultrasound stimulation, which can cause severe damage to tumor cells. This work emphasizes the efficient strategy of doping engineering and defect engineering for US-activated PzDT under exogenous stimulation.


Asunto(s)
Cobre , Nanoestructuras , Oxígeno , Oxígeno/química , Cobre/química , Humanos , Nanoestructuras/química , Nanoestructuras/uso terapéutico , Animales , Ratones , Neoplasias/terapia , Estrés Oxidativo/efectos de los fármacos , Línea Celular Tumoral , Bismuto/química , Especies Reactivas de Oxígeno/metabolismo , Glutatión/química
10.
Adv Mater ; 36(30): e2403253, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38703184

RESUMEN

Low efficacy of immunotherapy due to the poor immunogenicity of most tumors and their insufficient infiltration by immune cells highlights the importance of inducing immunogenic cell death and activating immune system for achieving better treatment outcomes. Herein, ferroelectric Bi2CuO4 nanoparticles with rich copper vacancies (named BCO-VCu) are rationally designed and engineered for ferroelectricity-enhanced apoptosis, cuproptosis, and the subsequently evoked immunotherapy. In this structure, the suppressed recombination of the electron-hole pairs by the vacancies and the band bending by the ferroelectric polarization lead to high catalytic activity, triggering reactive oxygen species bursts and inducing apoptosis. The cell fragments produced by apoptosis serve as antigens to activate T cells. Moreover, due to the generated charge by the ferroelectric catalysis, this nanomedicine can act as "a smart switch" to open the cell membrane, promote nanomaterial endocytosis, and shut down the Cu+ outflow pathway to evoke cuproptosis, and thus a strong immune response is triggered by the reduced content of adenosine triphosphate. Ribonucleic acid transcription tests reveal the pathways related to immune response activation. Thus, this study firstly demonstrates a feasible strategy for enhancing the efficacy of immunotherapy using single ferroelectric semiconductor-induced apoptosis and cuproptosis.


Asunto(s)
Apoptosis , Cobre , Inmunoterapia , Nanomedicina , Apoptosis/efectos de los fármacos , Cobre/química , Nanomedicina/métodos , Animales , Humanos , Ratones , Especies Reactivas de Oxígeno/metabolismo , Bismuto/química , Linfocitos T/inmunología , Nanopartículas/química , Línea Celular Tumoral
11.
Anal Chem ; 96(21): 8665-8673, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38722711

RESUMEN

Prostate-specific antigen (PSA) is a key marker for a prostate cancer diagnosis. The low sensitivity of traditional lateral flow immunoassay (LFIA) methods makes them unsuitable for point-of-care testing. Herein, we designed a nanozyme by in situ growth of Prussian blue (PB) within the pores of dendritic mesoporous silica (DMSN). The PB was forcibly dispersed into the pores of DMSN, leading to an increase in exposed active sites. Consequently, the atom utilization is enhanced, resulting in superior peroxidase (POD)-like activity compared to that of cubic PB. Antibody-modified DMSN@PB nanozymes serve as immunological probes in an enzymatic-enhanced colorimetric and photothermal dual-signal LFIA for PSA detection. After systematic optimization, the LFIA based on DMSN@PB successfully achieves a 4-fold amplification of the colorimetric signal within 7 min through catalytic oxidation of the chromogenic substrate by POD-like activity. Moreover, DMSN@PB exhibits an excellent photothermal conversion ability under 808 nm laser irradiation. Accordingly, photothermal signals are introduced to improve the anti-interference ability and sensitivity of LFIA, exhibiting a wide linear range (1-40 ng mL-1) and a low PSA detection limit (0.202 ng mL-1), which satisfies the early detection level of prostate cancer. This research provides a more accurate and reliable visualization analysis methodology for the early diagnosis of prostate cancer.


Asunto(s)
Colorimetría , Ferrocianuros , Inmunoensayo , Nanocompuestos , Antígeno Prostático Específico , Humanos , Masculino , Ferrocianuros/química , Inmunoensayo/métodos , Límite de Detección , Nanocompuestos/química , Porosidad , Antígeno Prostático Específico/análisis , Neoplasias de la Próstata/diagnóstico , Dióxido de Silicio/química
12.
Small Methods ; : e2400480, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38803307

RESUMEN

Enhancing the output performance of triboelectric nanogenerators (TENGs) is essential for increasing their application in smart devices. Oxygen-vacancy-rich BiO2-x nanosheets (BiO2-x NSs) are advanced-engineered nanomaterials with excellent piezoelectric properties. Herein, a stretchable unsymmetrical BiO2-x NSs deposited-hydrogel made of polyacrylamide (PAM) as a multimodal TENG is rationally fabricated, and the performance of TENG can be tailored by controlling the BiO2-x NSs deposition amount and spatial distribution. The alteration of resistance caused by the Poisson effect of PAM/BiO2-x composite hydrogel (H-BiO2-x) can be used as a piezoresistive sensor, and the piezoelectricity of BiO2-x NSs can effectively enhance the density of transfer charge, thus improving the output performance of the H-BiO2-x-based TENG. In addition, the chemical cross-linking between the BiO2-x NSs and the PAM polymer chain allows the hydrogel electrode to have a higher tensile capacity (867%). Used for biomechanical motion signal detection, the sensors made of H-BiO2-x have high sensitivity (gauge factor = 6.93) and can discriminate a range of forces (0.1-5.0 N) at low frequencies (0.5-2.0 Hz). Finally, the prepared TENG can collect biological energy and convert it into electricity. Consequently, the improved TENG shows a good application prospect as multimodal biomechanical sensors by combining piezoresistive, piezoelectric, and triboelectric effects.

13.
Small ; : e2401931, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708707

RESUMEN

Chemodynamic therapy (CDT) is a non-invasive strategy for generating reactive oxygen species (ROS) and is promising for cancer treatment. However, increasing ROS in tumor therapy remains challenging. Therefore, exogenous excitation and inhibition of electron-hole pair recombination are attractive for modulating ROS storms in tumors. Herein, a Ce-doped BiFeO3 (CBFO) piezoelectric sonosensitizer to modulate ROS generation and realize a synergistic mechanism of CDT/sonodynamic therapy and piezodynamic therapy (PzDT) is proposed. The mixed Fe2+ and Ce3+ can implement a circular Fenton/Fenton-like reaction in the tumor microenvironment. Abundant ·OH can be generated by ultrasound (US) stimulation to enhance CDT efficacy. As a typical piezoelectric sonosensitizer, CBFO can produce O2 - owing to the enhanced polarization by the US, resulting in the motion of charge carriers. In addition, CBFO can produce a piezoresponse irradiated upon US, which accelerates the migration rate of electrons/holes in opposite directions and results in energy band bending, further achieving toxic ROS production and realizing PzDT. Density functional theory calculations confirmed that Ce doping shortens the diffusion of electrons and improves the conductivity and catalytic activity of CBFO. This distinct US-enhanced strategy emphasizes the effects of doping engineering and piezoelectric-optimized therapy and shows great potential for the treatment of malignant tumors.

14.
Small ; : e2401650, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712474

RESUMEN

Piezoelectric catalysis is a novel catalytic technology that has developed rapidly in recent years and has attracted extensive interest among researchers in the field of tumor therapy for its acoustic-sensitizing properties. Nevertheless, researchers are still controversial about the key technical difficulties in the modulation of piezoelectric sonosensitizers for tumor therapy applications, which is undoubtedly a major obstacle to the performance modulation of piezoelectric sonosensitizers. Clarification of this challenge will be beneficial to the design and optimization of piezoelectric sonosensitizers in the future. Here, the authors start from the mechanism of piezoelectric catalysis and elaborate the mechanism and methods of defect engineering and phase engineering for the performance modulation of piezoelectric sonosensitizers based on the energy band theory. The combined therapeutic strategy of piezoelectric sonosensitizers with enzyme catalysis and immunotherapy is introduced. Finally, the challenges and prospects of piezoelectric sonosensitizers are highlighted. Hopefully, the explorations can guide researchers toward the optimization of piezoelectric sonosensitizers and can be applied in their own research.

15.
Adv Mater ; 36(26): e2314054, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38573654

RESUMEN

A cost-effective, scalable ball milling process is employed to synthesize the InGeSiP3 compound with a cubic ZnS structure, aiming to address the sluggish reaction kinetics of Si-based anodes for Lithium-ion batteries. Experimental measurements and first-principles calculations confirm that the synthesized InGeSiP3 exhibits significantly higher electronic conductivity, larger Li-ion diffusivity, and greater tolerance to volume change than its parent phases InGe (or Si)P2 or In (or Ge, or Si)P. These improvements stem from its elevated configurational entropy. Multiple characterizations validate that InGeSiP3 undergoes a reversible Li-storage mechanism that involves intercalation, followed by conversion and alloy reactions, resulting in a reversible capacity of 1733 mA h g-1 with an initial Coulombic efficiency of 90%. Moreover, the InGeSiP3-based electrodes exhibit exceptional cycling stability, retaining an 1121 mA h g-1 capacity with a retention rate of ≈87% after 1500 cycles at 2000 mA g-1 and remarkable high-rate capability, achieving 882 mA h g-1 at 10 000 mA g-1. Inspired by the distinctive characteristic of high entropy, the synthesis is extended to high entropy GaCu (or Zn)InGeSiP5, CuZnInGeSiP5, GaCuZnInGeSiP6, InGeSiP2S (or Se), and InGeSiPSSe. This endeavor overcomes the immiscibility of different metals and non-metals, paving the way for the electrochemical energy storage application of high-entropy silicon-phosphides.

16.
Nanomaterials (Basel) ; 14(7)2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38607145

RESUMEN

Thermocatalytic decomposition is an efficient purification technology that is potentially applicable to degrading chemical warfare agents and industrial toxic gases. In particular, ZrO2 has attracted attention as a catalyst for the thermocatalytic decomposition of dimethyl methylphosphonate (DMMP), which is a simulant of the nerve gas sarin. However, the influence of the crystal phase and morphology on the catalytic performance of ZrO2 requires further exploration. In this study, monoclinic- and tetragonal-phase ZrO2 (m- and t-ZrO2, respectively) with nanoparticle, flower-like shape and hollow microsphere morphologies were prepared via hydrothermal and solvothermal methods, and their thermocatalytic decomposition of DMMP was systematically investigated. For a given morphology, m-ZrO2 performed better than t-ZrO2. For a given crystalline phase, the morphology of hollow microspheres resulted in the longest protection time. The exhaust gases generated by the thermocatalytic decomposition of DMMP mainly comprised H2, CO2, H2O and CH3OH, and the by-products were phosphorus oxide species. Thus, the deactivation of ZrO2 was attributed to the deposition of these phosphorous oxide species on the catalyst surface. These results are expected to help guide the development of catalysts for the safe disposal of chemical warfare agents.

17.
Nano Lett ; 24(17): 5351-5360, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634773

RESUMEN

Ultrasensitive and reliable conductive hydrogels are significant in the construction of human-machine twinning systems. However, in extremely cold environments, freezing severely limits the application of hydrogel-based sensors. Herein, building on biomimetics, a zwitterionic hydrogel was elaborated for human-machine interaction employing multichemical bonding synergies and experimental signal analyses. The covalent bonds, hydrogen bonds, and electrostatic interactions construct a dense double network structure favorable for stress dispersion and hydrogen bond regeneration. In particular, zwitterions and ionic conductors maintained excellent strain response (99 ms) and electrical sensitivity (gauge factor = 14.52) in the dense hydrogel structure while immobilizing water molecules to enhance the weather resistance (-68 °C). Inspired by the high sensitivity, zwitterionic hydrogel-based strain sensors and remote-control gloves were designed by analyzing the experimental signals, demonstrating promising potential applications within specialized flexible materials and human-machine symbiotic systems.


Asunto(s)
Hidrogeles , Hidrogeles/química , Humanos , Dispositivos Electrónicos Vestibles , Congelación , Enlace de Hidrógeno , Electricidad Estática , Conductividad Eléctrica
18.
Small Methods ; : e2400125, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38461544

RESUMEN

Nanoformulations with endogenous/exogenous stimulus-responsive characteristics show great potential in tumor cell elimination with minimal adverse effects and high precision. Herein, an intelligent nanotheranostic platform (denoted as TPZ@Cu-SnS2-x /PLL) for tumor microenvironment (TME) and near-infrared light (NIR) activated tumor-specific therapy is constructed. Copper (Cu) doping and the resulting sulfur vacancies can not only improve the response range of visible light but also improve the separation efficiency of photogenerated carriers and increase the carrier density, resulting in the ideal photothermal and photodynamic performance. Density functional theory calculations revealed that the introduction of Cu and resulting sulfur vacancies can induce electron redistribution, achieving favorable photogenerated electrons. After entering cells through endocytosis, the TPZ@Cu-SnS2-x /PLL nanocomposites show the pH responsivity property for the release of the TPZ selectively within the acidic TME, and the released Cu2+ can first interact with local glutathione (GSH) to deplete GSH with the production of Cu+ . Subsequently, the Cu+ -mediated Fenton-like reaction can decompose local hydrogen peroxide into hydroxyl radicals, which can also be promoted by hyperthermia derived from the photothermal effect for tumor cell apoptosis. The integration of photoacoustic/computed tomography imaging-guided NIR phototherapy, TPZ-induced chemotherapy, and GSH-elimination/hyperthermia enhanced chemodynamic therapy results in synergistic therapeutic outcomes without obvious systemic toxicity in vivo.

20.
Nano Lett ; 24(6): 2071-2080, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38305186

RESUMEN

Ferroptosis is a novel type of nonapoptotic programmed cell death involving the accumulation of lipid peroxidation (LPO) to a lethal threshold. Herein, we propose tunable zeolitic imidazolate framework (ZIFs)-engineered biodegradable nanozymes for ferroptosis mediated by both reactive oxygen species (ROS) and nitrogen species (RNS). l-Arginine is utilized as an exogenous nitric oxide donor and loaded into hollow ZIFs@MnO2 artificial nanozymes, which are formed by etching ZIFs with potassium permanganate and simultaneously generating a MnO2 shell in situ. The constructed nanozymes with multienzyme-like activities including peroxidase, oxidase, and catalase can release satisfactory ROS and RNS through a cascade reaction, consequently promoting the accumulation of LPO. Furthermore, it can improve the efficiency of ferroptosis through a three-step strategy of glutathione (GSH) depletion; that is, the outer MnO2 layer consumes GSH under slightly acidic conditions and RNS downregulates SLC7A11 and glutathione reductase, thus directly inhibiting GSH biosynthesis and indirectly preventing GSH regeneration.


Asunto(s)
Ferroptosis , Estructuras Metalorgánicas , Especies Reactivas de Oxígeno , Compuestos de Manganeso/farmacología , Óxidos , Estrés Oxidativo , Glutatión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA