RESUMEN
Flexible conductive fibers have shown tremendous potential in diverse fields, including health monitoring, intelligent robotics, and human-machine interaction. Nevertheless, most conventional flexible conductive materials face challenges in meeting the high conductivity and stretchability requirements. In this study, we introduce a knitted structure of liquid metal conductive fibers. The knitted structure of liquid metal fiber significantly reduces the resistance variation under tension and exhibits favorable durability, as evidenced by the results of cyclic tensile testing, which indicate that their resistance only undergoes a slight increase (<3%) after 1300 cycles. Furthermore, we demonstrate the integration of these liquid metal fibers with various rigid electronic components, thereby facilitating the production of pliable LED arrays and intelligent garments for electrocardiogram (ECG) monitoring. The LED array underwent a 30 min machine wash, during which it consistently retained its normal functionality. These findings evince the devices' robust stable circuit functionality and water resistance that remain unaffected by daily human activities. The liquid metal knitted fibers offer great promise for advancing the field of flexible conductive fibers. Their exceptional electrical and mechanical properties, combined with compatibility with existing electronic components, open new possibilities for applications in the physiological signal detection of carriers, human-machine interaction, and large-area electronic skin.
Asunto(s)
Robótica , Dispositivos Electrónicos Vestibles , Humanos , Electrónica , Metales , Conductividad EléctricaRESUMEN
A porous CeO2 was synthesized following the addition of guanidine carbonate to a Ce3+ aqueous solution, the subsequent addition of hydrogen peroxide and a final hydrothermal treatment. The optimal experimental parameters for the synthesis of porous CeO2, including the amounts of guanidine carbonate and hydrogen peroxide and the hydrothermal conditions, were determined by taking the adsorption efficiency of acid orange 7 (AO7) dye as the evaluation. A template-free hydrothermal strategy could avoid the use of soft or hard templates and the subsequent tedious procedures of eliminating templates, which aligned with the goals of energy conservation and emission reduction. Moreover, both the guanidine carbonate and hydrogen peroxide used in this work were accessible and eco-friendly raw materials. The porous CeO2 possessed rapid adsorption capacities for AO7 dye. When the initial concentration of AO7 was less than 130 mg/L, removal efficiencies greater than 90.0% were obtained, achieving a maximum value of 97.5% at [AO7] = 100 mg/L and [CeO2] = 2.0 g/L in the first 10 min of contact. Moreover, the adsorption-desorption equilibrium between the porous CeO2 adsorbent and the AO7 molecule was basically established within the first 30 min. The saturated adsorption amount of AO7 dye was 90.3 mg/g based on a Langmuir linear fitting of the experimental data. Moreover, the porous CeO2 could be recycled using a NaOH aqueous solution, and the adsorption efficiency of AO7 dye still remained above 92.5% after five cycles. This study provided an alternative porous adsorbent for the purification of dye wastewater, and a template-free hydrothermal strategy was developed to enable the design of CeO2-based catalysts or catalyst carriers.
RESUMEN
In this work, we demonstrated a convenient and green strategy for the synthesis of highly luminescent and water-soluble carbon dots (Cdots) by carbonizing carbon precursors, i.e., Bovine serum albumin (BSA) nanoparticles, in water solution. Without post surface modification, the as-synthesized Cdots exhibit fluorescence quantum yield (Q.Y.) as high as 34.8% and display superior colloidal stability not only in concentrated salt solutions (e.g. 2 M KCl) but also in a wide range of pH solutions. According to the FT-IR measurements, the Cdots contain many carboxyl groups, providing a versatile route for further chemical and biological functionalization. Through conjugation of Cdots with the transacting activator of transcription (TAT) peptide (a kind of cell penetration peptide (CPP)) derived from human immunodeficiency virus (HIV), it is possible to directly monitor the dynamic interactions of CPP with living cell membrane at single particle level. Furthermore, these Cdots also exhibit a dosage-dependent selectivity toward Fe(3+) among other metal ions, including K(+), Na(+), Mg(2+), Hg(2+), Co(2+), Cu(2+), Pb(2+) and Al(3+). We believed that the Cdots prepared by this strategy would display promising applications in various areas, including analytical chemistry, nanomedicine, biochemistry and so on.
Asunto(s)
Péptidos de Penetración Celular/química , Nanopartículas/química , Puntos Cuánticos , Albúmina Sérica Bovina/química , Animales , Carbono/química , Bovinos , Diagnóstico por Imagen , VIH/química , Humanos , Iones/química , Luminiscencia , Metales/química , Espectroscopía Infrarroja por Transformada de Fourier , AguaRESUMEN
In this work, we demonstrate a convenient and robust strategy for efficient fabrication of high fluorescence quantum yield (QY, 49.8 ± 3%) semiconducting polymer nanoparticles (SPNs), with size comparable with semiconductor quantum dots (Qdots). The SPNs were synthesized by co-precipitation of hydrophobic semiconducting polymer together with amphiphilic multidentate polymer. Comprehensive spectroscopic and microscopic characterizations showed that the SPNs possess superior photophysical performance, with excellent fluorescence brightness and reduced photoblinking in contrast with Qdots, as well as good photostability compared to a fluorescent protein of a similar size, phycoerythrin. More importantly, by conjugating membrane biomarkers onto the surface of SPNs, it was found that they were not only suitable for specific cellular labelling but also for single particle tracking because of the improved optical performance.