Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38674980

RESUMEN

Nanocellulose fiber materials were considered promising biomaterials due to their excellent biodegradability, biocompatibility, high hydrophilicity, and cost-effectiveness. However, their low proton conductivity significantly limited their application as proton exchange membranes. The methods previously reported to increase their proton conductivity often introduced non-biodegradable groups and compounds, which resulted in the loss of the basic advantages of this natural polymer in terms of biodegradability. In this work, a green and sustainable strategy was developed to prepare cellulose-based proton exchange membranes that could simultaneously meet sustainability and high-performance criteria. Adenine and thymine were introduced onto the surface of tempo-oxidized nanocellulose fibers (TOCNF) to provide many transition sites for proton conduction. Once modified, the proton conductivity of the TOCNF membrane increased by 31.2 times compared to the original membrane, with a specific surface area that had risen from 6.1 m²/g to 86.5 m²/g. The wet strength also increased. This study paved a new path for the preparation of environmentally friendly membrane materials that could replace the commonly used non-degradable ones, highlighting the potential of nanocellulose fiber membrane materials in sustainable applications such as fuel cells, supercapacitors, and solid-state batteries.

2.
Polymers (Basel) ; 16(7)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38611265

RESUMEN

Natural polymer-based adhesive hydrogels have garnered significant interest for their outstanding strength and versatile applications, in addition to being eco-friendly. However, the adhesive capabilities of purely natural products are suboptimal, which hampers their practical use. To address this, we engineered carboxymethyl cellulose (CMC) surfaces with complementary bases, adenine (A) and thymine (T), to facilitate the self-assembly of adhesive hydrogels (CMC-AT) with a nanofiber configuration. Impressively, the shear adhesive strength reached up to 6.49 MPa with a mere 2% adhesive concentration. Building upon this innovation, we conducted a comparative analysis of the shear adhesion properties between CMC and CMC-AT hydrogel adhesives when applied to delignified and non-delignified wood chips. We examined the interplay between the adhesives and the substrate, as well as the role of mechanical interlocking in overall adhesion performance. Our findings offer a fresh perspective on the development of new biodegradable polymer hydrogel adhesives.

3.
Carbohydr Polym ; 329: 121530, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38286525

RESUMEN

Separators are indispensable components in lithium-ion batteries (LIBs), providing efficient pathways for lithium ions to travel and isolating the positive and negative electrodes to avoid short circuits. However, traditional polyolefin-based separators exhibit inferior electrolyte affinities, limited porosities, and low thermal stabilities. In this study, a novel method was developed to prepare chitosan micro/nanofiber membranes as LIB separators using natural materials. The pore sizes of the chitosan micro/nanofibers separators were modulated by changing the diameters of the chitosan fibers. The results demonstrated that the chitosan nanofiber separators (CSNFs) had superior electrolyte uptake (281 %), excellent thermal dimensional stability, and electrochemical performance in LiFePO4/Li half-cell, as indicated by the higher discharge capacity after 100 cycles, and higher rate capacity than commercial Celgard2325 separator. This study paves the way for the fabrication of eco-efficient and environment-friendly separators for high-performance LIBs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA