Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
ACS Nano ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023225

RESUMEN

Engineering fast-moving microrobot swarms that can physically disassemble bacterial biofilms and kill the bacteria released from the biofilms is a promising way to combat bacterial biofilm infections. Here, we report electrochemical design of Ag7O8NO3 microtorpedoes with outstanding antibacterial performance and meanwhile capable of moving at speeds of hundreds of body lengths per second in clinically used H2O2 aqueous solutions. These fast-moving antibacterial Ag7O8NO3 microtorpedoes could penetrate into and disintegrate the bacterial biofilms and, in turn, kill the bacteria released from the biofilms. Based on the understanding of the growth behavior of the microtorpedoes, we could fine-tune the morphology of the microtorpedoes to accelerate the moving speed and increase their penetration depth into the biofilms simply via controlling the potential waveforms. We further developed an automatic shaking method to selectively peel off the uniformly structured microtorpedoes from the electrode surface, realizing continuous electrochemical production of the microtorpedoes. Animal experiments proved that the microtorpedo swarms greatly increased the survival rate of the mice infected by lethal biofilms to >90%. We used the electrochemical method to design and massively produce uniformly structured fast-moving antibacterial microtorpedo swarms with application potentials in treatment of lethal bacterial biofilm infections.

2.
Small Methods ; 8(5): e2300910, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38415973

RESUMEN

Rational morphology control of inorganic microarchitectures is important in diverse fields, requiring precise regulation of nucleation and growth processes. While wet chemical methods have achieved success regarding the shape-controlled synthesis of micro/nanostructures, accurately controlling the growth behavior in real time remains challenging. Comparatively, the electrodeposition technique can immediately control the growth behavior by tuning the overpotential, whereas it is rarely used to design complex microarchitectures. Here, the electrochemical design of complex Cu2O microarchitectures step-by-step by precisely controlling the growth behavior is demonstrated. The growth modes can be switched between the thermodynamic and kinetic modes by varying the overpotential. Cl- ions preferably adhered to {100} facets to modulate growth rates of these facets is proved. The discovered growth modes to prepare Cu2O microarchitectures composed of multiple building units inaccessible with existing methods are employed. Polyvinyl alcohol (PVA) additives can guarantee all pre-electrodeposits simultaneously evolve into uniform microarchitectures, instead of forming undesired microstructures on bare electrode surfaces in following electrodeposition processes is discovered. The designed Cu2O microarchitectures can be converted into noble metal microstructures with shapes unchanged, which can be used as surface-enhanced Raman scattering substrates. An electrochemical avenue toward rational design of complex inorganic microarchitectures is opened up.

3.
Nat Commun ; 14(1): 5860, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37730799

RESUMEN

The templating method holds great promise for fabricating surface nanopatterns. To enhance the manufacturing capabilities of complex surface nanopatterns, it is important to explore new modes of the templates beyond their conventional masking and molding modes. Here, we employed the metal-organic framework (MOF) microparticles assembled monolayer films as templates for metal electrodeposition and revealed a previously unidentified guiding growth mode enabling the precise growth of metallic films exclusively underneath the MOF microparticles. The guiding growth mode was induced by the fast ion transportation within the nanochannels of the MOF templates. The MOF template could be repeatedly used, allowing for the creation of identical metallic surface nanopatterns for multiple times on different substrates. The MOF template-guided electrochemical growth mode provided a robust route towards cost-effective fabrication of complex metallic surface nanopatterns with promising applications in metamaterials, plasmonics, and surface-enhanced Raman spectroscopy (SERS) sensing fields.

4.
Nano Lett ; 23(14): 6736-6743, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37428515

RESUMEN

Slippery surfaces can enrich analytes from solutions into tiny dots after solvent evaporation for surface-enhanced Raman scattering (SERS) detection. Here, we make the self-assembled Au nanosphere monolayers slippery, which can not only behave as SERS substrates but also enrich the analytes during solvent evaporation. A thin silica shell was used to wrap the Au nanosphere monolayer to allow the functionalization of a slippery polydimethylsiloxane brush monolayer onto it. These slippery Au nanosphere monolayers could be easily cleaned and reused many times. When Au nanospheres were introduced into the analyte solution droplet on the slippery Au nanosphere monolayer, a 3D Au nanoparticle/analyte aggregate was formed after solvent evaporation. Both the Au nanoparticle aggregate and the underneath slippery Au nanosphere monolayer could contribute to SERS enhancement. We endow the self-assembled Au nanosphere monolayer SERS substrates with an analyte enrichment function, greatly strengthening their SERS enhancement.

5.
ACS Appl Mater Interfaces ; 15(4): 5161-5171, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36648156

RESUMEN

Zn-ion batteries with low cost and high safety have been regarded as a promising energy storage technology for grid storage. It is well-known that the metal anode surface orientation is vital to its reversibility. Herein, we demonstrate a facile route to control the Zn metal anode surface orientation through electrodeposition with electrolyte additives. An ultrathin (101)-inclined Zn metal anode (down to 2 µm) is obtained by adding a small amount of dimethyl sulfoxide (DMSO) in the ZnSO4 aqueous electrolyte. Scanning electron microscopy indicates the formation of flat terrace-like surfaces, while in situ optical observations demonstrate the reversible plating and stripping. DFT calculations reveal that the large reconstruction of the Zn-(101) surface with DMSO and H2O adsorption to lower the interface energy is the main driving force for surface preference. Raman, XPS, and ToF-SIMS characterizations are performed to unveil the surface SEI components. Exceptional electrochemical performance is demonstrated for the (101)-inclined Zn metal anode in a half cell, which could cycle for 200 h with a low overpotential (<50 mV). The Zn||V2O full cells are assembled, showing much better cycle performance for the 5 µm (101)-inclined Zn metal anode as compared to the commercialized 10 µm Zn metal foil, with a maximum specific capacity of 359 mAh/g and >170 mAh/g after over 300 cycles. We hope this study will spur further interest in the control of surface crystallographic orientation for a stable ultrathin Zn metal anode.

6.
ACS Appl Mater Interfaces ; 15(6): 8286-8297, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36719779

RESUMEN

Microparticles composed of bicontinuous and ordered macropores are important in many applications. However, rational integration of ordered macropores into a single crystalline microparticle remains a challenge. Here, we report a method to prepare three-dimensionally ordered macroporous (3DOM) Ag7O8NO3 micropyramids via selectively cementing the colloidal crystal templates via an electrochemical method and their shape-preserving transformation into 3DOM Ag micropryamids formed by Ag nanoparticles via a chemical reduction process. The interconnected macropores facilitated the transportation and enrichment of the analyte molecules into the 3DOM Ag micropyramids. The dense Ag nanoparticles on the skeletons of the 3DOM Ag micropyramids provided strong electromagnetic fields. Taken together, a 3DOM Ag micropyramid as a kind of single-particle surface-enhanced Raman scattering (SERS) sensing substrate demonstrated high SERS sensitivity and outstanding SERS signal reproducibility. We explored the application of 3DOM Ag micropyramids in SERS detection of biomolecules (e.g., adenosine, adenine, hemoglobin bovine, and lysozyme) and proved their potentials in distinguishing exosomes from tumor and non-tumor cells. The method can be extended to prepared 3DOM structures of other materials with promising applications in sensing, separation, and catalytic fields.

7.
ACS Nano ; 17(3): 2257-2265, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36661565

RESUMEN

Although various artificial dyes and pigments have been invented, certain application fields need structural colors because they can last for centuries even under harsh conditions. Here, we report that the antireflective Ag brochosomes (soccer-ball-like microscale granules covered by nanobowls) become colorful when the nanobowls on the Ag brochosomes are filled by polystyrene (PS) nanospheres. The color originates from the enhanced electromagnetic resonances of the PS nanospheres by the surrounding metallic nanobowls, suggested by both the experimental and the simulation results. The color is determined by the size of the PS nanospheres. We can tailor the color simply by reducing the diameter of the PS nanospheres via the plasma etching treatment. The color intensity of the Ag brochosomes filled with PS nanospheres shows weak dependence on the observing angles, benefiting from their spherical shape. Plasma etching treatment of the Ag brochosomes filled with PS nanospheres through different masks can design various structural color patterns. The simple fabrication process and the easy processability make the Ag brochosomes filled with PS nanospheres have promising applications in the structural color fields.

8.
Nat Commun ; 13(1): 7807, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36528683

RESUMEN

Concentrating a trace amount of molecules from liquids, solid objects, or the gas phase and delivering them to a localized area are crucial for almost any trace analyte detection device. Analytes within a liquid droplet resting on micro/nanostructured surfaces with liquid-repellent coatings can be concentrated during solvent evaporation. However, these coatings suffer from complex manufacturing procedures, poor versatility, and limited analyte enrichment efficiency. Here, we report on the use of an acoustic levitation platform to losslessly concentrate the analyte molecules dissolved in any volatile liquid, attached to solid objects, or spread in air. Gold nanoparticles can be simultaneously concentrated with the analytes in different phases, realizing sensitive, surface-enhanced Raman scattering detection even at attomolar (10-18 mol/L) concentration levels. The acoustic levitation platform-enabled, lossless analyte enrichment can significantly increase the analytical performance of many conventional microsensing techniques.


Asunto(s)
Nanopartículas del Metal , Nanoestructuras , Oro , Espectrometría Raman/métodos , Solventes
9.
Ecotoxicol Environ Saf ; 247: 114233, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36334342

RESUMEN

Nickel compounds, an international carcinogen in the industrial environment, increased the risk of lung inflammation even lung cancer in Ni refinery workers. Metformin has displayed the intense anti-inflammation and anti-cancer properties through regulating pyroptosis. This study was designed to explore whether Nickel-refining fumes (NiRF) can induce cell pyroptosis and how AMPK/CREB/Nrf2 mediated the protection afforded by metformin against Ni particles-induced lung impairment. Our results represented that Ni fumes exposure evoked pyroptosis via GOLPH3 and induced oxidative stress, while, metformin treatment alleviated Ni particles-mediated above changes. Moreover, nuclear factor erythroid 2-related factor 2 (Nrf2) involved in the protection of metformin, and the deficiency of Nrf2 attenuated the beneficial protection. We also determined that Nrf2 was a downstream molecule of AMPK/CREB pathway. Furthermore, male C57BL/6 mice were administered with Ni at a dose of 2 mg/kg by non-exposed endotracheal instillation and metformin (100, 200 and 300 mg/kg) via oral gavage for 4 weeks. The results indicated that NiRF promoted GOLPH3 and pyroptosis by stimulating NLRP3, caspase-1, N-GSDMD, IL-18 and IL-1ß expression. However, various doses of metformin reduced GOLPH3 and the above protein levels of pyroptosis, also improved AMPK/CREB/Nrf2 expression. In summary, we found that metformin suppressed NiRF-connected GOLPH3-prompted pyroptosis via AMPK/CREB/Nrf2 signaling pathway to confer pulmonary protection.


Asunto(s)
Neoplasias Pulmonares , Metformina , Animales , Masculino , Ratones , Proteínas Quinasas Activadas por AMP , Gases , Metformina/farmacología , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/genética , Níquel/toxicidad , Piroptosis
10.
Small ; 18(42): e2203628, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36135803

RESUMEN

Microarchitectures with complex interior structures are important for many applications. However, engineering complex interior structures within microarchitectures are challenging. This article reports the introduction of electrochemical sculpting processes to carve the microarchitectures during or after their electrochemical growing process to design the interior structure of the microarchitectures. The electrochemical growing and sculpting process tangle together under the constant voltage electrodeposition mode with their strength depending on the ion concentration gradient and the voltage value. The unique thawing process of the frozen electrolyte is used to create the desired sharp ion concentration gradient, and has the potential to control the strength of the sculpting and the growing processes. How to completely decouple the growing and the sculpting process is further studied to gain more accurate control over the interior structures of the microarchitectures. It is revealed that the sculpting process can be exclusively applied onto the electrochemically grown microarchitectures simply by reversing the electric field without triggering any growing processes. Microarchitectures with complex interior structures, including micropyramids with a single cavity exclusively at the outward or every apex to multi-walled hollow pyramids with designable wall numbers and inter-wall distances are prepared as examples.

11.
Small ; 18(44): e2203229, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36050885

RESUMEN

The assembly of biomolecules and ions (e.g., biomineralization process) generates many intricate structures in nature. However, human beings' control over the assembly processes of ions is in its infant stage compared with nature. Here, it is reported that the intermediate valence metal ions in the electrolyte can influence the growth speed of certain crystal facets and in turn adjust the shape of the electrodeposits created by anodic electrodeposition. This is because the intermediate valence metal ions (e.g., Pb2+ , Mn2+ , etc.) can be oxidized by the electrochemically oxidized high valence ions (e.g., Ag2+ and Ag3+ ). Therefore, the concentration of the electrochemically oxidized high valence ions can be controlled by the intermediate valence ions, affecting the growth kinetics of the electrodeposits. Taking the anodic electrodeposition of Ag7 O8 NO3 as an example, the role of intermediate valence ions in tailoring the shape of the Ag7 O8 NO3 electrodeposits is demonstrated. Moreover, the growth location of the second-order structure can be controlled by the intermediate valence metal ions. Additionally, the designed complex microarchitectures starting from certain crystal facets to form hollow nanoframes can be selectively etched. The control capability over the electrochemical assembly process of metal ions is significantly strengthened by introducing intermediate valence ions into the electrolyte.


Asunto(s)
Galvanoplastia , Metales , Humanos , Metales/química , Electrodos , Iones , Electrólitos
12.
Nanoscale ; 14(39): 14750-14759, 2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36173260

RESUMEN

The growth of metal nanostructures induced by surface plasmons has attracted widespread attention and provides a wide range of applications in the development of plasmonic nanochemistry, biosensors, photoelectrochemical coupling reactions, etc. Herein, a simple method is reported for the fabrication of Ag nanoflakes induced by the surface plasma on two-dimensional periodic nanopatterned arrays with the aid of 4-MBA molecules. The light radiation, molecules, and environmental gases are selected to track the formation mechanism of Ag nanoflakes. The in situ Raman observations and theoretical analyses confirm that small aromatic molecules with carboxyl groups play important roles in Ag nanoflake formation derived by localized surface plasmon resonance (LSPR)-driven carriers, which provide profound insights into the study of LSPR-driven carriers, participating in chemical reactions and the reconstruction of dense hot spots in nanogaps.

13.
Nat Commun ; 13(1): 3581, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35739115

RESUMEN

Achieving versatile dispersion of nanoparticles in a broad range of solvents (e.g., water, oil, and biofluids) without repeatedly recourse to chemical modifications are desirable in optoelectronic devices, self-assembly, sensing, and biomedical fields. However, such a target is limited by the strategies used to decorate nanoparticle's surface properties, leading to a narrow range of solvents for existing nanoparticles. Here we report a concept to break the nanoparticle's dispersible limit via electrochemically anchoring surface ligands capable of sensing the surrounding liquid medium and rotating to adapt to it, immediately forming stable dispersions in a wide range of solvents (polar and nonpolar, biofluids, etc.). Moreover, the smart nanoparticles can be continuously electrodeposited in the electrolyte, overcoming the electrode surface-confined low throughput limitation of conventional electrodeposition methods. The anomalous dispersive property of the smart Ag nanoparticles enables them to resist bacteria secreted species-induced aggregation and the structural similarity of the surface ligands to that of the bacterial membrane assists them to enter the bacteria, leading to high antibacterial activity. The simple but massive fabrication process and the enhanced dispersion properties offer great application opportunities to the smart nanoparticles in diverse fields.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Electrólitos/química , Ligandos , Nanopartículas del Metal/química , Nanopartículas/química , Plata , Solventes/química
14.
Ecotoxicol Environ Saf ; 236: 113461, 2022 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-35405526

RESUMEN

Nickel (Ni) compounds is recognized industrial carcinogen, which could increase the risk of lung cancer in Ni refineries workers. However, the underlying carcinogenic mechanism still remains to elucidate. Metformin has shown the anticancer properties through suppressing aerobic glycolysis. In the present study, we evaluated the effect of Ni-refining fumes exposure on aerobic glycolysis and the role of AMPK/GOLPH3, as well as how metformin alleviated nickel-induced aerobic glycolysis in vitro and vivo. Firstly, Beas-2B cells were exposed to different concentrations of Ni-refining fumes and pretreated with metformin (activation of AMPK), compound C (AMPK inhibitor) in vitro. Our findings indicated that Ni fumes expose evoked aerobic glycolysis by AMPK/GOLPH3, while metformin attenuated Ni particles-promoted GOLPH3-mediated aerobic glycolysis by p-AMPK expression increase. Then Mito-TEMPT (a mitochondria-targeted antioxidant) and lipopolysaccharide (LPS, ROS activator) were pretreated to affect ROS production in Beas-2B cells. Ni-induced ROS prevented AMPK activation. Moreover, C57BL/6 mice were exposed to 2 mg/kg Ni by non-exposed endotracheal instillation and metformin (100, 200 and 300 mg/kg) via oral gavage for 4 weeks. The effects of AMPK/GOLPH3 axis on Ni-induced aerobic glycolysis were assessed. The results indicated that metformin decreased the protein levels of GOLPH3, LDHA, HK2, MCT-4 and improved p-AMPK expression. Thus, our findings demonstrated metformin antagonized Ni-refining fumes-caused aerobic glycolysis via AMPK/GOLPH3.


Asunto(s)
Metformina , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Glucólisis , Lipopolisacáridos/metabolismo , Metformina/farmacología , Ratones , Ratones Endogámicos C57BL , Níquel/toxicidad , Especies Reactivas de Oxígeno/metabolismo
15.
Small Methods ; 6(6): e2200293, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35478330

RESUMEN

Nanopatterns are important for applications in various nanodevice fields. Existing nanopatterning techniques mainly directly manufacture the nanopatterns through various lithographic methods, which usually are laborious, time-consuming, and need expensive equipment. Here, an extremely simple drawing at the nanoscale (DAN) concept to indirectly fabricate rational nanopatterns through controlling the macroscopic movement of the substrate , is demonstrated. The structure of the nanopatterns is completely determined by and can be shrunk by millions of times from the moving track of the substrate. Multiple surface nanopatterns of different materials with accurately tailorable relative positions can be simply stacked together by moving the substrate by macroscopic distances during different DAN processes. In combination with sophisticated lithographic methods, the DAN method is anticipated to enable substantial advances in nanofabrication.


Asunto(s)
Impresión , Propiedades de Superficie
16.
J Colloid Interface Sci ; 620: 388-398, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35436620

RESUMEN

Broadband surface-enhanced Raman scattering (SERS) substrates can achieve strong SERS enhancement at multiple excitation wavelengths, which is highly desirable in diverse fields. Here, a facile and reliable interfacial layer-by-layer self-assembly technique was proposed to construct broadband and sensitive Au@Ag nanorod (NR) monolayer film over nanosphere (MFON) substrate. The Au@Ag NR MFON substrate with ultra-broad spectrum from visible to near-infrared region was achieved by varying the shape of plasmonic nanoparticles, which exhibits excellent SERS activity at different excitation wavelengths. Besides, the size of Au@Ag NRs and polystyrene spheres, and the layer numbers of Au@Ag NR film were altered to optimize the sensitivity of SERS substrates. Notably, the SERS intensity of the optimally designed Au@Ag NR MFON substrate is 25-fold larger than that of Au@Ag NR monolayer film deposition on the plane Si wafer. Furthermore, the optimal Au@Ag NR MFON substrate presents excellent reproducibility and a much wider quantitative detection range, which enables a wide-linear-range analysis of thiram in grape juice by a portable Raman spectrometer. Therefore, we envision that this study opens a new avenue toward the design of ultra-sensitive and broadband SERS platforms with widespread applications.


Asunto(s)
Nanopartículas del Metal , Nanosferas , Nanotubos , Oro , Reproducibilidad de los Resultados , Plata , Espectrometría Raman
17.
Biosens Bioelectron ; 202: 114004, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35078140

RESUMEN

Structures with dense nanopores are desirable as surface-enhanced Raman scattering (SERS) sensing substrates because the nanopores can behave as both analyte containers and SERS-active sites (known as hot spots). Inspired by the dealloying process to prepare nanoporous structures through selectively removing active metals from their alloy, we developed a method to prepare nanoporous Ag nanorods through chemical reduction of the electrodeposited Ag7O8NO3 nanorods using a strong reducing agent (e.g., NaBH4). The length and the thickness of the Ag7O8NO3 nanorods could be controlled by the electrodeposition voltage and time. Nitrogen and oxygen elements were immediately removed from Ag7O8NO3 nanorods by the reducing agent, leaving behind a tremendous number of nanopores with a mean size of 20 nm, which can efficiently trap and enrich analytes. Meanwhile, the densely packed nanopores can behave as SERS hot spots to provide strong SERS enhancement. The nanoporous Ag nanorods as SERS substrates were used to sensitively detect adenine, spike glycoprotein, and polychlorinated biphenyls pollutants, as well as identify different types of bacteria. The simple fabrication process and the outstanding SERS performance of the nanoporous Ag nanorods make them promising candidates for SERS applications towards trace detection of pollutants, narcotics, food additives, and biomolecules.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Nanoporos , Nanotubos , Nanopartículas del Metal/química , Plata/química , Espectrometría Raman/métodos
18.
Nanoscale ; 13(31): 13344-13352, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34477740

RESUMEN

The construction and clinical application of a surface-enhanced Raman scattering (SERS) platform for the early diagnosis of lung cancer could improve the survival rate of patients and would be of great significance. Nevertheless, a sensitive and reusable method for the detection of aldehydes, as biomarkers of lung cancer, in exhaled breath is still an enormous challenge. Aldehydes generally have a low cross section in Raman scattering and have a weak specific affinity to plasmonic nanoparticle surfaces, meaning that sensing them at low concentrations is incredibly difficult. Herein, an ultrasensitive SERS strategy, that can be recycled for further use, for the detection of lung cancer biomarkers in the form of aldehydes was realized by fabrication of a multifunctional Ag NPs@ZIF-67/g-C3N4 solid phase extraction (SPE) membrane. Based on the change in the vibrational fingerprints of 4-ATP before and after reaction with the aldehydes, the SPE membrane was successfully used for the ultrasensitive detection of aldehydes with a detection limit of 1.35 nM. The excellent SERS performance was attributed to the synergistic effect of the densely and closely distributed Ag NPs (providing SERS "hot spots"), ZIF-67 (concentrating the analyte molecules) and g-C3N4 (forming a membrane to prolong the contact time between the aldehydes and the substrate). In addition, recycling of the SPE membrane was achieved by utilizing the self-cleaning ability of the Ag NPs@ZIF-67/g-C3N4 membrane originating from the photocatalytic properties of g-C3N4. The proposed SERS membrane was easy to operate, rapid and portable, thus providing a potential tool for a point-of-care test in clinical and diagnostic practice.


Asunto(s)
Neoplasias Pulmonares , Nanopartículas del Metal , Biomarcadores de Tumor , Humanos , Neoplasias Pulmonares/diagnóstico , Plata , Extracción en Fase Sólida , Espectrometría Raman
19.
ACS Appl Mater Interfaces ; 13(5): 6505-6514, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33502156

RESUMEN

The room-temperature saturation recrystallization (RTSR) method has been extensively used to prepare all-inorganic lead halide perovskite (e.g., CsPbBr3) nanocrystals. Here, we revealed that the composition of the products prepared by the seemingly simple RTSR method could be extremely complex under different experimental parameters. The pH value of the solution and the protonation tendency of the amines influenced by the amounts and types of introduced amines, oleic acid, and water from the environment determined the composition of the final products. PbBr2, 2D Ruddlesden-Popper perovskites (RPPs) formed by perovskite layers separated by intercalating cations, and laurionite Pb(OH)Br would form under acidic, mildly acidic, and alkaline conditions, respectively. Based on the understanding of the formation mechanism, Pb(OH)Br microparticles with well-defined morphologies were prepared, which could be transformed into highly luminescent CH3NH3PbBr3 with the morphology unchanged. The protonated amine behaves as an intercalating layer during the formation of 2D RPPs. Phenylethylamine (PEA) was proven to be an appropriate amine to prepare pure RPP microplates because of its weaker alkalinity compared to aliphatic amines. The prepared (PEA)2PbBr4 RPP microplates showed strong deep-blue light emission with a PL peak at 415 nm, which could be fine-tuned by changing amines. This study proved the complex reaction pathways of the seemingly simple RTSR method and extended the RTSR method into the fabrication of 2D RPPs and laurionite with promising applications in optoelectronic devices.

20.
ACS Appl Bio Mater ; 4(5): 3729-3738, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35006803

RESUMEN

Because of the emergent evolution of multidrug-resistant (MDR) bacteria, resistance to traditional antibiotics has been increasingly causing public health concerns that it can rapidly overcome the development of antibacterial agents. Here, we demonstrated a facile electrodeposition method to prepare silver peroxysulfite (Ag7O8HSO4, AOHS) superpyramids on band-aids with extraordinary antibacterial performance. The porous structure and the sharp apex of AOHS superpyramids could facilitate the release of high-valence silver ions, which possess highly efficient MDR bacteria-killing effect and keep long-term antibacterial activity (>99% killing efficiency, recycle at least 4 times) because of their superior destruction capability of the membrane of the bacteria. A layer of copper was further evaporated onto the AOHS pyramids decorated on a band-aid, which could promote wound tissue angiogenesis and prohibit bacterial infection simultaneously, and finally accelerate the healing process in MDR bacteria-infected wound in vivo. The simple and low-cost fabrication process, as well as the outstanding antibacterial performance, make AOHS pyramids have promising applications in bacterial infection and practical sterilization fields, especially toward multidrug-resistant bacteria.


Asunto(s)
Antibacterianos/farmacología , Materiales Biocompatibles/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Amidas/química , Amidas/farmacología , Antibacterianos/química , Infecciones Bacterianas/tratamiento farmacológico , Materiales Biocompatibles/química , Humanos , Ensayo de Materiales , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Plata/química , Plata/farmacología , Sulfitos/química , Sulfitos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA