Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(43): e2414741121, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39423243

RESUMEN

The insatiable demand for lithium in portable energy storage necessitates a sustainable and low-carbon approach to its recovery. Conventional hydrometallurgical and pyrometallurgical methods heavily involve hazardous chemicals and significant CO2 emissions. Herein, by integrating electrode oxidation with electrolyte oxidation, we establish a photovoltaic-driven "dual-oxidation" seawater electrolyzer system for low-carbon footprint and high lithium recovery. A 98.96% lithium leaching rate with 99.60% product purity was demonstrated for lithium recovery from spent LiFePO4 cathode materials. In-depth mechanism studies reveal that the electric field-driven electrode oxidation and in situ generated oxidative electrolyte synergetically contributes to lithium ions leaching via a structural framework elements oxidation and particle corrosion splitting synergy. This dual-oxidation mechanism facilitates rapid and efficient lithium extraction with broad universality, offering significant economic and environmental benefits. Our work showcases a promising strategy for integrating dual oxidation within a photovoltaic-driven seawater electrolyzer, paving the way for low-carbon lithium recovery from diverse solid wastes and minerals within a sustainable circular economy.

2.
Nano Lett ; 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39437159

RESUMEN

Plastic waste poses a profound threat to ecosystems and human health, necessitating novel strategies for effective degradation in nature. Here, we present a novel approach utilizing upconversion phosphors as additives to significantly accelerate plastic photodegradation in nature via enhancing ultraviolet (UV) radiation. Pr-doped Li2CaGeO4 (LCGO:Pr) upconversion phosphors readily converting blue light into deep-UV radiation, dramatically improve photodegradation rates for polyethylene (PE) and polyethylene terephthalate (PET) microplastics. In situ spectroscopic studies show that upconversion fluorescence initiates the photophysical cleavage of C-C and C-O bonds in the backbones of PE and PET, resulting in plastic degradation. Moreover, incorporating LCGO:Pr into polypropylene (PP) sheets realizes markedly enhanced photodamage, with the cracking area increasing by nearly 38-fold under simulated sunlight for 10 days. This underscores the potential of employing this approach for the construction of light-driven destructible polymers. Further optimization and exploration of material compatibility hold promise for developing sustainable photodegradable plastics.

3.
Behav Brain Res ; 461: 114783, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38029845

RESUMEN

In recent years, central precocious puberty (CPP) in children is becoming more common, which seriously affects their physical and psychological health and requires finding a safe and effective treatment method. The aim of this study was to investigate the therapeutic effect of melatonin on CPP. A CPP model was established by subcutaneous injection of 300 micrograms of danazol into 5-day-old female mice, followed by treatment with melatonin and leuprolide. The vaginal opening was checked daily. Mice were weighed, gonads were weighed, gonadal index was calculated, and gonadal development was observed by hematoxylin and eosin (HE) staining. Serum follicle stimulating hormone (FSH), luteinizing hormone (LH) and estradiol (E2) levels were measured by ELISA. By using RT-PCR and Western blotting, the mRNA and protein expression of the hypothalamus Kiss-1, Kiss-1 receptor (Kiss1R), gonadotropin-releasing hormone (GnRH), and pituitary GnRH receptor (GnRHR) were identified. The results showed that melatonin delayed vaginal opening time and reduced body weight, gonadal weight and indices in female CPP mice. Melatonin treatment prevents uterine wall thickening and ovarian luteinization in female CPP mice. Melatonin treatment reduces serum concentrations of FSH, LH, and E2 in female CPP mice. Melatonin suppressed the expressions of Kiss-1, Kiss1R and GnRH in the hypothalamus, and the expression of GnRHR in the pituitary of the female CPP mice. Our results suggest that melatonin can inhibit the hypothalamic-pituitary-gonadal (HPG) axis by down-regulating the Kiss-1/Kiss1R system, thereby treating CPP in female mice.


Asunto(s)
Melatonina , Pubertad Precoz , Humanos , Niño , Femenino , Ratones , Animales , Pubertad Precoz/tratamiento farmacológico , Pubertad Precoz/metabolismo , Melatonina/farmacología , Kisspeptinas/metabolismo , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Liberadora de Gonadotropina/farmacología , Hormona Luteinizante/metabolismo , Hormona Luteinizante/uso terapéutico , Hormona Folículo Estimulante/uso terapéutico , Hipotálamo/metabolismo
4.
Nano Lett ; 23(6): 2219-2227, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36913675

RESUMEN

Chemical/electric energy-driven processes dominate the traditional precious metal (PM) recovery market. The renewable energy-driven selective PM recycling approach crucial for carbon neutrality is under exploration. Herein, via an interfacial structure engineering approach, coordinational-active pyridine groups are covalently integrated onto the photoactive semiconductor SnS2 surface to construct Py-SnS2. Triggered by the preferred coordinational binding force between PMs and pyridine groups, together with the photoreduction capability of SnS2, Py-SnS2 shows significantly enhanced selective PM-capturing performance toward Au3+, Pd4+, and Pt4+ with recycling capacity up to 1769.84, 1103.72, and 617.61 mg/g for Au3+, Pd4+, and Pt4+, respectively. Further integrating the Py-SnS2 membrane into a homemade light-driven flow cell, 96.3% recovery efficiency was achieved for continuous Au recycling from a computer processing unit (CPU) leachate. This study reported a novel strategy to fabricate coordinational bonds triggered photoreductive membranes for continuous PM recovery, which could be expanded to other photocatalysts for broad environmental applications.

5.
Exp Ther Med ; 25(2): 76, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36684658

RESUMEN

The hypothalamic peptide gonadotropin inhibitory hormone (GnIH) is a relatively novel hypothalamic neuropeptide, identified in 2000. It can influence the hypothalamic-pituitary-gonadal axis and reproductive function through various neuroendocrine systems. The present study aimed to explore the effects and potential underlying molecular mechanism of RFamide-related peptide-3 (RFRP-3) injection on the uterine fluid protein profile of ovariectomized estrogen-primed (OEP) rats using proteomics. In addition, the possible effects of RFRP-3 on the viability and apoptosis of the human endometrial cancer cell line HEC-1A and associated molecular mechanism were investigated. The OEP rat model was established through injection with GnIH/RFRP-3 through the lateral ventricle. At 6 h after injection, the protein components of uterine fluid of rats in the experimental and control groups were analyzed using liquid chromatography (LC)-tandem mass spectrometry (MS/MS). Differentially expressed proteins (DEPs) were analyzed using the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Protein-protein interactions (PPI) were investigated using the STRING database. PPI networks were then established before hub proteins were selected using OmicsBean software. The expression of one of the hub proteins, Kras, was then detected using western blot analysis. Cell Counting Kit-8, Annexin V-FITC/PI, reverse transcription-quantitative PCR and western blotting were also performed to analyze cell viability and apoptosis. In total, 417 DEPs were obtained using LC-MS/MS, including 279 upregulated and 138 downregulated proteins. GO analysis revealed that the majority of the DEPs were secretory proteins. According to KEGG enrichment analysis, the DEPs found were generally involved in tumor-associated pathways. In particular, five hub proteins, namely G protein subunit α (Gna)13, Gnaq, Gnai3, Kras and MMP9, were obtained following PPI network analysis. Western blot analysis showed that expression of the hub protein Kras was downregulated following treatment with 10,000 ng/ml RFRP-3. RFRP-3 treatment (10,000 ng/ml) also suppressed HEC-1A cell viability, induced apoptosis, downregulated Bcl-2 and upregulated Bax protein expression, compared with those in the control group. In addition, compared with those in the control group, RFRP-3 significantly reduced the mRNA expression levels of PI3K, AKT and mTOR, while upregulating those of LC3-II. Compared with those in the control group, RFRP-3 significantly decreased the protein expression levels of PI3K, AKT, mTOR and p62, in addition to decreasing AKT phosphorylation. By contrast, RFRP-3 significantly increased the LC3-II/I ratio and G protein-coupled receptor 147 (GPR147) protein expression. In conclusion, the present data suggest that RFRP-3 can alter the protein expression profile of the uterine fluid of OEP rats by upregulating MMP9 expression whilst downregulating that of key hub proteins Gna13, GnaQ, Gnai3 and Kras. Furthermore, RFRP-3 can inhibit HEC-1A cell viability while promoting apoptosis. The underlying molecular mechanism may involve activation of GPR147 receptor by the direct binding of RFRP-3, which further downregulates the hub protein Kras to switch on the PI3K/AKT/mTOR pathway. This subsequently reduces the Bcl-2 expression and promotes Bax expression to induce autophagy.

6.
Brain Sci ; 12(11)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36421874

RESUMEN

In recent years, the age of children entering puberty is getting lower and the incidence of central precocious puberty is increasing. It is known that melatonin plays an increasingly important role in regulating animal reproduction, but the specific role and mechanism of melatonin in regulating the initiation of puberty remain unclear. The purpose of the current study was to investigate the effect of subcutaneous melatonin injection on pubertal development in female mice and its mechanism of action. Female mice that were 22 days old received 1 mg/kg doses of melatonin subcutaneously every day for 10, 15 and 20 days. The vaginal opening was checked daily. Hematoxylin and eosin (HE) stain was used to determine the growth of the uterus and ovaries. Enzyme-linked immunosorbent assay (ELISA) was used to determine the levels of follicle-stimulating hormone (FSH), gonadotropin-inhibiting hormone (GnIH), and gonadotropin-releasing hormone (GnRH) in serum. By using RT-PCR and Western blotting, the mRNA and protein expression of the hypothalamus GnRH, GnIH, Kisspeptin (Kp), Proopiomelanocortin (POMC), Neuropeptide Y (NPY), as well as G protein-coupled receptor 147 (GPR147) were identified. The findings demonstrated that melatonin could suppress ovarian follicle and uterine wall growth as well as delay vaginal opening, decrease serum levels of GnRH and FSH and increase levels of GnIH. Melatonin increased GnIH and GPR147 expression in the hypothalamus in comparison to the saline group, while decreasing the expression of GnRH, Kisspeptin, POMC, and NPY. In conclusion, exogenous melatonin can inhibit the onset of puberty in female mice by modulating the expression of hypothalamic GnRH, GnIH, Kisspeptin, POMC and NPY neurons and suppressing the hypothalamic-pituitary-gonadal axis.

7.
Nat Commun ; 13(1): 2146, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35443754

RESUMEN

Ultrathin two-dimensional (2D) metal oxyhalides exhibit outstanding photocatalytic properties with unique electronic and interfacial structures. Compared with monometallic oxyhalides, bimetallic oxyhalides are less explored. In this work, we have developed a novel top-down wet-chemistry desalination approach to remove the alkali-halide salt layer within the complicated precursor bulk structural matrix Pb0.6Bi1.4Cs0.6O2Cl2, and successfully fabricate a new 2D ultrathin bimetallic oxyhalide Pb0.6Bi1.4O2Cl1.4. The unlocked larger surface area, rich bimetallic active sites, and faster carrier dynamics within Pb0.6Bi1.4O2Cl1.4 layers significantly enhance the photocatalytic efficiency for atmospheric CO2 reduction. It outperforms the corresponding parental matrix phase and other state-of-the-art bismuth-based monometallic oxyhalides photocatalysts. This work reports a top-down desalination strategy to engineering ultrathin bimetallic 2D material for photocatalytic atmospheric CO2 reduction, which sheds light on further constructing other ultrathin 2D catalysts for environmental and energy applications from similar complicate structure matrixes.

8.
Exp Ther Med ; 23(1): 24, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34815776

RESUMEN

RFamide-related peptide-3 (RFRP-3) may be involved in the inhibition of kisspeptin, but there is no direct evidence that RFRP-3 can directly act on kisspeptin neurons. The present study aimed to investigate the role and mechanism of RFRP-3 and kisspeptin in the hypothalamic-pituitary reproductive axis. In order to detect the expression and localization of RFRP-3 and kisspeptin in dorsomedial hypothalamic nucleus, double immunofluorescence method combined with confocal microscopy were performed. RFRP-3 was injected into the lateral ventricle of ovariectomized estrogen primed rats. Blood and brain tissues were collected at 60-, 120-, 240- and 360-min. Serum levels of gonadotropin-releasing hormone, luteinizing hormone and follicle-stimulating hormone were detected by ELISA. Kisspeptin expression in hypothalamus was detected by western blotting. Finally, surface plasmon resonance was used to verify whether RFRP-3 can directly interact with kisspeptin. Confocal images indicated that RFRP-3 and kisspeptin were co-expressed in the same neurons in the hypothalamus of ovariectomized estrogen-primed rats. Serum concentrations of gonadotropin-releasing hormone, luteinizing hormone and follicle-stimulating hormone were demonstrated to be significantly reduced following microinjection of RFRP-3 into the lateral ventricle for 60, 120, 240 and 360 min compared with the corresponding saline groups. The expression levels of kisspeptin in hypothalamus were gradually decreased following microinjection of RFRP-3 into the lateral ventricle. In addition, the affinity constant (KD) of RFRP-3 binding to kisspeptin was 6.005x10-5 M, indicating that RFRP-3 bound directly to kisspeptin in the range of protein-protein binding strength (KD, 10-3-10-6 M). In conclusion, RFRP-3 may regulate the hypothalamic-pituitary reproductive axis by inhibiting the expression of hypothalamic kisspeptin and direct binding.

9.
Mol Med Rep ; 23(2)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33313947

RESUMEN

Triple negative breast cancer (TNBC) is a subtype of breast cancer characterized by an aggressive histology and poor prognosis, with limited treatment options in the clinic. In the present study, the effect of sericin, as an anti­cancer drug, on TNBC cell proliferation was investigated using a MTT assay, a colony formation assay and immunocytochemistry staining of Ki67. Results from the flow cytometry demonstrated that sericin induced G0/G1 cell cycle arrest and promoted cellular apoptosis. Cell cycle and apoptosis­related proteins were detected via western blot analysis. Immunocytochemistry staining identified that P21 was translocated into the nucleus. Additionally, several pathways were significantly enriched in TNBC based on the Gene Expression Omnibus database, with the most prominent pathway being the PI3K/Akt signaling pathway. In TNBC MDA­MB­468 cells, sericin suppressed the PI3K/Akt pathway. All these findings suggested that sericin served a critical role in suppressing TNBC cell proliferation, inducing cell cycle arrest and promoting cellular apoptosis. The results indicated that the underlying molecular mechanism was, at least partially, via the downregulation of the PI3K/Akt signaling pathway.


Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sericinas/farmacología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Biología Computacional , Bases de Datos Genéticas , Regulación hacia Abajo/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Transducción de Señal/efectos de los fármacos
10.
Exp Ther Med ; 16(4): 3345-3352, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30250521

RESUMEN

The aim of the current study was to investigate the regulatory effect of sericin on the hepatic insulin-phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway in a type 2 diabetes rat model. Male Sprague Dawley rats were randomly divided into four groups: Control group, diabetic model group, high-dose sericin group and low-dose sericin group, with 12 rats in each group. Fasting blood glucose was detected by the glucose oxidase method, and hepatic glycogen was determined by periodic acid-Schiff staining. The morphology of the liver was observed by hematoxylin and eosin staining. Immunohistochemical staining, western blotting and reverse transcription-quantitative polymerase chain reaction were used to determine the protein and mRNA expression levels of insulin receptor (IR), IR substrate-1 (IRS-1), PI3K and AKT. Compared with the control group, the blood glucose of the diabetic model group was significantly increased (P<0.05). The glycogen content and the expression levels of IR, IRS-1, PI3K and AKT in the diabetic model group were significantly lower (P<0.05), and the liver morphological structure of the diabetic model group exhibited obvious pathological changes compared with the control group. Compared with the diabetic model group, the blood glucose of the high- and low-dose sericin groups was significantly reduced, while the glycogen content and the expression levels of IR, IRS-1, PI3K and AKT in the sericin treatment groups were significantly increased (P<0.05). Additionally, the liver pathological changes of high-dose and low-dose sericin groups were markedly reduced. Sericin may enhance the signaling transduction effect of insulin by upregulating the expression levels of key factors (IR, IRS-1, PI3K and AKT) in the liver insulin-PI3K/AKT signaling pathway, thus promoting glucose transport and liver glycogen synthesis, and further reducing blood glucose.

11.
Neural Regen Res ; 8(19): 1756-64, 2013 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-25206472

RESUMEN

Previous studies have shown that sericin extracted from silk cocoon significantly reduces blood glucose levels and protects the nervous system against diabetes mellitus. In this study, a rat type 2 diabetes mellitus model was established by intraperitoneal injection of 25 mg/kg streptozotocin for 3 successive days, following which the rats were treated with sericin for 35 days. After treatment, the blood glucose levels of the diabetic rats decreased significantly, the growth hormone level in serum and its expression in the hippocampus decreased significantly, while the insulin-like growth factor-1 level in serum and insulin-like growth factor-1 and growth hormone receptor expression in the hippocampus increased significantly. The experimental findings indicate that sericin improves disorders of the growth hormone/insulin-like growth factor 1 axis to alleviate hippocampal damage in diabetic rats.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA