Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
1.
JAMA ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235816

RESUMEN

Importance: Previous randomized clinical trials did not demonstrate the superiority of endovascular stenting over aggressive medical management for patients with symptomatic intracranial atherosclerotic stenosis (sICAS). However, balloon angioplasty has not been investigated in a randomized clinical trial. Objective: To determine whether balloon angioplasty plus aggressive medical management is superior to aggressive medical management alone for patients with sICAS. Design, Setting, and Participants: A randomized, open-label, blinded end point clinical trial at 31 centers across China. Eligible patients aged 35 to 80 years with sICAS defined as recent transient ischemic attack (<90 days) or ischemic stroke (14-90 days) before enrollment attributed to a 70% to 99% atherosclerotic stenosis of a major intracranial artery receiving treatment with at least 1 antithrombotic drug and/or standard risk factor management were recruited between November 8, 2018, and April 2, 2022 (final follow-up: April 3, 2023). Interventions: Submaximal balloon angioplasty plus aggressive medical management (n = 249) or aggressive medical management alone (n = 252). Aggressive medical management included dual antiplatelet therapy for the first 90 days and risk factor control. Main Outcomes and Measures: The primary outcome was a composite of any stroke or death within 30 days after enrollment or after balloon angioplasty of the qualifying lesion or any ischemic stroke in the qualifying artery territory or revascularization of the qualifying artery after 30 days through 12 months after enrollment. Results: Among 512 randomized patients, 501 were confirmed eligible (mean age, 58.0 years; 158 [31.5%] women) and completed the trial. The incidence of the primary outcome was lower in the balloon angioplasty group than the medical management group (4.4% vs 13.5%; hazard ratio, 0.32 [95% CI, 0.16-0.63]; P < .001). The respective rates of any stroke or all-cause death within 30 days were 3.2% and 1.6%. Beyond 30 days through 1 year after enrollment, the rates of any ischemic stroke in the qualifying artery territory were 0.4% and 7.5%, respectively, and revascularization of the qualifying artery occurred in 1.2% and 8.3%, respectively. The rate of symptomatic intracranial hemorrhage in the balloon angioplasty and medical management groups was 1.2% and 0.4%, respectively. In the balloon angioplasty group, procedural complications occurred in 17.4% of patients and arterial dissection occurred in 14.5% of patients. Conclusions and Relevance: In patients with sICAS, balloon angioplasty plus aggressive medical management, compared with aggressive medical management alone, statistically significantly lowered the risk of a composite outcome of any stroke or death within 30 days or an ischemic stroke or revascularization of the qualifying artery after 30 days through 12 months. The findings suggest that balloon angioplasty plus aggressive medical management may be an effective treatment for sICAS, although the risk of stroke or death within 30 days of balloon angioplasty should be considered in clinical practice. Trial Registration: ClinicalTrials.gov Identifier: NCT03703635.

2.
Phys Chem Chem Phys ; 26(35): 23429-23437, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39221565

RESUMEN

The nanoscale ampification of light-matter interactions exhibits profound potential in multiple scientific fields, such as physics, chemistry, surface science, materials science, and nanophotonics. Nonetheless, achieving robust optical mode coupling within cavities faces significant hurdles due to modal dispersion and weak optical field confinement. In this theoretical investigation, we demonstrate the viability of strong coupling between the anapole mode of a slotted silicon nanodisk and the plasmonic modes of an Ag nanodisk dimer at visible light frequencies. By introducing anapole modes, we successfully confine light to subwavelength volumes, suppressing radiative losses and achieving a remarkable Rabi splitting of 468 meV. This substantial coupling is facilitated by the large spatial overlap of intense optical fields. Capitalizing on this strong mode coupling, we generate novel hybrid energy states with significant electromagnetic field enhancement. Our study serves as a valuable blueprint for designing platforms based on strong anapole mode coupling at visible frequencies and paves the way for deeper explorations into nanoscale light-matter interactions.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39172509

RESUMEN

The threat posed by biological and chemical warfare agents (BCWA) to national security, the environment, and personal health underscores the need for innovative chemical protective clothing. To address the limitations of conventional activated carbon materials, which are prone to falling off and adsorption saturation, an efficient self-association approach was introduced. In this study, we proposed the immobilization of metal-organic framework (MOF) 808 and Ag nanoparticles onto a polypropylene (PP) fiber membrane using a rapid self-association method facilitated by chitosan (CS). The MOF 808/Ag-based (PP-CS/808-Ag) fiber membrane demonstrated exceptional degradation efficiency, achieving a remarkable rate of t1/2 within 2 h for the mustard simulant 2-chloroethyl ethyl sulfide (2-CEES) and a rate of t1/2 = 4.12 min for the G-series simulant dimethyl 4-nitrophenylphosphate (DMNP). A theoretical computational model was developed to determine the overall reaction mechanism, and it was verified that MOF 808 and Ag nanoparticles were mainly involved in the hydrolysis process against 2-CEES and DMNP. The PP-CS/808-Ag composite fiber film was prepared as the core layer, and the fracture strength, bending resistance, and moisture permeability were better than those specified by many countries for biochemical protective clothing, showing that it has a broad application prospect in developing a generation of broad-spectrum bioprotective clothing.

4.
Inorg Chem ; 63(36): 16908-16917, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39190605

RESUMEN

Direct synthesis of germanosilicate zeolites with low Ge content and improved hydrothermal stability is a great challenge. Herein, we successfully achieve the direct synthesis of IWS zeolite with a Si/Ge ratio higher than 4 for the first time. High silica IWS zeolites can be prepared in a wide range of Si/Ge ratios (4-16) by utilizing bulky 1,3-bis(1-adamantyl)-imidazolium (BAdaI+) as an efficient organic structure-directing agent from the concentrated synthesis gel under fluoride conditions. It is proven by a series of characterizations that Ge atoms preferentially occupy the double-four-ring (D4R) units. Theoretical calculations reveal the preferential interactions of guest organic structure-directing agents (OSDAs) and host IWS zeolites with different Si/Ge ratios. The introduction of more Ge atoms cannot improve the host-guest interaction when the BAdaI+ molecule is accommodated within the nanopores of IWS zeolite compared to other OSDAs. The obtained IWS zeolite shows an extremely high specific surface area (905 m2/g) and pore volume (1.31 cm3/g). Due to the low Ge content, IWS zeolite exhibits outstanding hydrothermal stability and experiences high temperature steam heating with no loss of crystallinity and only a slight loss of microporosity.

5.
Diabetes Metab Syndr Obes ; 17: 2855-2867, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100967

RESUMEN

Purpose: Luteolin is a promising candidate for diabetic nephropathy due to its potential anti-inflammatory and anti-fibrotic properties. This study explored the molecular mechanisms through which luteolin combats fibrosis in DN. Methods: Potential targets affected by luteolin and genes associated with DN were collected from databases. Overlapping targets between luteolin and diabetic nephropathy were identified through Venn analysis. A protein-protein interaction network was constructed using these common targets, and critical pathways and targets were elucidated through GO and KEGG analysis. These pathways and targets were confirmed using a streptozotocin-induced mouse model. Luteolin was administered at 45 mg/kg and 90 mg/kg. Various parameters were evaluated, including body weight, blood glucose levels, and histopathological examinations. Protein levels related to energy metabolism, inflammation, and fibrosis were quantified. Results: Fifty-three targets associated with luteolin and 36 genes related to diabetic nephropathy were extracted. The AGE-RAGE signaling pathway was the key pathway impacted by luteolin in diabetic nephropathy. Key molecular targets include TGF-ß, IL-1ß, and PPARG. Luteolin reduced body weight and blood glucose levels, lowered the left kidney index, and improved insulin and glucose tolerance. Furthermore, luteolin mitigated inflammatory cell infiltration, basement membrane thickening, and collagen deposition in the kidney. Luteolin up-regulated the protein expression of p-AMPKα (Th172) while simultaneously down-regulated the protein expression of p-NF-ĸB (p65), NLRP3, TGF-ß1, α-SMA, and Collagen I. Conclusion: Luteolin mitigated renal fibrosis by alleviating energy metabolism disruptions and inflammation by modulating the AMPK/NLRP3/TGF-ß signaling pathway.

6.
Materials (Basel) ; 17(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38793337

RESUMEN

The rapid development of additive manufacturing (AM) has facilitated the creation of bionic lightweight, energy-absorbing structures, enabling the implementation of more sophisticated internal structural designs. For protective structures, the utilization of artificially controlled deformation patterns can effectively reduce uncertainties arising from random structural damage and enhance deformation stability. This paper proposed a bionic corrugated lightweight honeycomb structure with controllable deformation. The force on the onset state of deformation of the overall structure was investigated, and the possibility of controlled deformation in the homogeneous structure was compared with that in the corrugated structure. The corrugated structures exhibited a second load-bearing capacity wave peak, with the load-bearing capacity reaching 60.7% to 117.29% of the first load-bearing peak. The damage morphology of the corrugated structure still maintained relative integrity. In terms of energy absorption capacity, the corrugated lightweight structure has a much stronger energy absorption capacity than the homogeneous structure due to the second peak of the load carrying capacity. The findings of this study suggested that the combination of geometric customization and longitudinal corrugation through additive manufacturing offers a promising approach for the development of high-performance energy-absorbing structures.

7.
Reprod Biol Endocrinol ; 22(1): 61, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783347

RESUMEN

BACKGROUND: Prospective observational studies have demonstrated that the machine learning (ML) -guided noninvasive chromosome screening (NICS) grading system, which we called the noninvasive chromosome screening-artificial intelligence (NICS-AI) grading system, can be used embryo selection. The current prospective interventional clinical study was conducted to investigate whether this NICS-AI grading system can be used as a powerful tool for embryo selection. METHODS: Patients who visited our centre between October 2018 and December 2021 were recruited. Grade A and B embryos with a high probability of euploidy were transferred in the NICS group. The patients in the control group selected the embryos according to the traditional morphological grading. Finally, 90 patients in the NICS group and 161 patients in the control group were compared statistically for their clinical outcomes. RESULTS: In the NICS group, the clinical pregnancy rate (70.0% vs. 54.0%, p < 0.001), the ongoing pregnancy rate (58.9% vs. 44.7%, p = 0.001), and the live birth rate (56.7% vs. 42.9%, p = 0.001) were significantly higher than those of the control group. When the female was ≥ 35 years old, the clinical pregnancy rate (67.7% vs. 32.1%, p < 0.001), ongoing pregnancy rate (56.5% vs. 25.0%, p = 0.001), and live birth rate (54.8% vs. 25.0%, p = 0.001) in the NICS group were significantly higher than those of the control group. Regardless of whether the patients had a previous record of early spontaneous abortion or not, the live birth rate of the NICS group was higher than that of the control group (61.0% vs. 46.9%; 57.9% vs. 34.8%; 33.3% vs. 0%) but the differences were not statistically significant. CONCLUSIONS: NICS-AI was able to improve embryo utilisation rate, and the live birth rate, especially for those ≥ 35 years old, with transfer of Grade A embryos being preferred, followed by Grade B embryos. NICS-AI can be used as an effective tool for embryo selection in the future.


Asunto(s)
Aprendizaje Automático , Índice de Embarazo , Humanos , Femenino , Embarazo , Adulto , Estudios Prospectivos , Transferencia de un Solo Embrión/métodos , Diagnóstico Preimplantación/métodos , Transferencia de Embrión/métodos , Infertilidad Femenina/terapia , Infertilidad Femenina/genética , Infertilidad Femenina/diagnóstico , Resultado del Tratamiento , Infertilidad/terapia , Infertilidad/diagnóstico , Infertilidad/genética
8.
Anal Methods ; 16(20): 3209-3219, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38713168

RESUMEN

BACKGROUND: halogenic disinfectants have been shown to produce toxic and carcinogenic disinfection by-products in the water disinfection process. Dibromohydantoin (DBDMH) is a commonly used water disinfectant in aquaculture. Aquaculture water has more complex matrix, and the analytical method for disinfection by-products (DBPs) have not been reported. Since the content of DBPs is related to the external conditions such as ultraviolet irradiation, temperatures, pH and humic acid. The semi-target screening method for mainly DBPs based on tracing mass spectrometry fragments of bromide and accurate mass of high resolution mass spectrometry was established by ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-tof/MS). Br-DBPs as a important class of DBPs from DBDMH, which quantification analysis methods were developed based on accurate mass of high resolution mass spectrometry. METHODS: through screening method to identify unknown Br-DBPs and quantitative analysis of the typical 4-bromophenol by-product of accurate mass was established. The conditions of the instrument parameters of mass spectrometry and SPE sample preparation procedure in complex real sample were optimized. The high efficiency method was demonstrated for the determination of Br-DBPs with a good linear correlation (R2 = 0.999) in the range of 0.500-200 µg L-1 and limit of detections (LODs) and limit of quantifications (LOQs) were 0.0250 ng L-1 and 0.0834 ng L-1, respectively. CONCLUSION: the developed screening and quantification analytical strategy for Br-DBPs is rapid, accurate and sensitivity applicable for environmental in aquaculture water monitoring.


Asunto(s)
Acuicultura , Desinfectantes , Espectrometría de Masas , Contaminantes Químicos del Agua , Acuicultura/métodos , Cromatografía Líquida de Alta Presión/métodos , Contaminantes Químicos del Agua/análisis , Espectrometría de Masas/métodos , Desinfectantes/análisis , Desinfectantes/química , Desinfección/métodos
9.
Neural Regen Res ; 19(12): 2708-2722, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38595289

RESUMEN

JOURNAL/nrgr/04.03/01300535-202412000-00027/figure1/v/2024-04-08T165401Z/r/image-tiff Thalamic hemorrhage can lead to the development of central post-stroke pain. Changes in histone acetylation levels, which are regulated by histone deacetylases, affect the excitability of neurons surrounding the hemorrhagic area. However, the regulatory mechanism of histone deacetylases in central post-stroke pain remains unclear. Here, we show that iron overload leads to an increase in histone deacetylase 2 expression in damaged ventral posterolateral nucleus neurons. Inhibiting this increase restored histone H3 acetylation in the Kcna2 promoter region of the voltage-dependent potassium (Kv) channel subunit gene in a rat model of central post-stroke pain, thereby increasing Kcna2 expression and relieving central pain. However, in the absence of nerve injury, increasing histone deacetylase 2 expression decreased Kcna2 expression, decreased Kv current, increased the excitability of neurons in the ventral posterolateral nucleus area, and led to neuropathic pain symptoms. Moreover, treatment with the iron chelator deferiprone effectively reduced iron overload in the ventral posterolateral nucleus after intracerebral hemorrhage, reversed histone deacetylase 2 upregulation and Kv1.2 downregulation, and alleviated mechanical hypersensitivity in central post-stroke pain rats. These results suggest that histone deacetylase 2 upregulation and Kv1.2 downregulation, mediated by iron overload, are important factors in central post-stroke pain pathogenesis and could serve as new targets for central post-stroke pain treatment.

10.
Gene ; 918: 148482, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38649061

RESUMEN

OBJECTIVES: Sepsis is a life-threatening infectious disease in which an immune inflammatory response is triggered. The potential effect of ferroptosis-related genes (FRGs) in inflammation of sepsis remained unclear. We focused on identifying and validating core FRGs and their association with immune infiltration in blood from currently all patients with sepsis. METHODS: All current raw data of septic blood were obtained from Gene Expression Omnibus. After removing the batch effect merging into a complete dataset and obtaining Diferentially expressed genes (DEGs). Common cross-talk genes were identified from DEGs and FRGs. WGCNA, GO, KEGG, PPI, GESA, ROC curves, and LASSO regression analysis were performed to indentify and validate key genes based on external septic datasets. Infiltrated immune cells in 2 hub genes (MAPK14 and ACSL4) were conducted using CIBERSORT algorithm and Spearman correlation analysis. Further, the expressions of 2 core FRGs were verified in the LPS-induced ALI and cardiac injury sepsis mice. RESULTS: MAPK14 and ACSL4 were identified, mostly enriched in T cell infiltration through NOD-like receptor signaling pathway according to the high or low 2 hub genes expression. The upregulated 2 ferroptosis-related genes were validated in LPS-induced ALI and cardiac injury mice, accompanied by upregulation of the NLRP3 pathway. CONCLUSION: MAPK14 and ACSL4 could become robustly reliable and promising biomarkers for sepsis by regulating ferroptosis through the NLRP3 pathway, which is mainly associated with T-cell infiltration.


Asunto(s)
Biología Computacional , Ferroptosis , Sepsis , Ferroptosis/genética , Sepsis/genética , Sepsis/inmunología , Animales , Ratones , Biología Computacional/métodos , Humanos , Coenzima A Ligasas/genética , Perfilación de la Expresión Génica/métodos , Masculino , Redes Reguladoras de Genes , Ratones Endogámicos C57BL , Mapas de Interacción de Proteínas/genética
11.
Angew Chem Int Ed Engl ; 63(23): e202403245, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38578838

RESUMEN

The encapsulation of functional colloidal nanoparticles (100 nm) into single-crystalline ZSM-5 zeolites, aiming to create uniform core-shell structures, is a highly sought-after yet formidable objective due to significant lattice mismatch and distinct crystallization properties. In this study, we demonstrate the fabrication of a core-shell structured single-crystal zeolite encompassing an Fe3O4 colloidal core via a novel confinement stepwise crystallization methodology. By engineering a confined nanocavity, anchoring nucleation sites, and executing stepwise crystallization, we have successfully encapsulated colloidal nanoparticles (CN) within single-crystal zeolites. These grafted sites, alongside the controlled crystallization process, compel the zeolite seed to nucleate and expand along the Fe3O4 colloidal nanoparticle surface, within a meticulously defined volume (1.5×107≤V≤1.3×108 nm3). Our strategy exhibits versatility and adaptability to an array of zeolites, including but not restricted to ZSM-5, NaA, ZSM-11, and TS-1 with polycrystalline zeolite shell. We highlight the uniformly structured magnetic-nucleus single-crystalline zeolite, which displays pronounced superparamagnetism (14 emu/g) and robust acidity (~0.83 mmol/g). This innovative material has been effectively utilized in a magnetically stabilized bed (MSB) reactor for the dehydration of ethanol, delivering an exceptional conversion rate (98 %), supreme ethylene selectivity (98 %), and superior catalytic endurance (in excess of 100 hours).

12.
Apoptosis ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652339

RESUMEN

Chronic inflammatory and immune responses play key roles in the development and progression of chronic obstructive pulmonary disease (COPD). PANoptosis, as a unique inflammatory cell death modality, is involved in the pathogenesis of many inflammatory diseases. We aim to identify critical PANoptosis-related biomarkers and explore their potential effects on respiratory tract diseases and immune infiltration landscapes in COPD. Total microarray data consisting of peripheral blood and lung tissue datasets associated with COPD were obtained from the GEO database. PANoptosis-associated genes in COPD were identified by intersecting differentially expressed genes (DEGs) with genes involved in pyroptosis, apoptosis, and necroptosis after normalizing and removing the batch effect. Furthermore, GO, KEGG, PPI network, WGCNA, LASSO-COX, and ROC curves analysis were conducted to screen and verify hub genes, and the correlation between PYCARD and infiltrated immune cells was analyzed. The effect of PYCARD on respiratory tract diseases and the potential small-molecule agents for the treatment of COPD were identified. PYCARD expression was verified in the lung tissue of CS/LPS-induced COPD mice. PYCARD was a critical PANoptosis-related gene in all COPD patients. PYCARD was positively related to NOD-like receptor signaling pathway and promoted immune cell infiltration. Moreover, PYCARD was significantly activated in COPD mice mainly by targeting PANoptosis. PANoptosis-related gene PYCARD is a potential biomarker for COPD diagnosis and treatment.

13.
Angew Chem Int Ed Engl ; 63(17): e202401032, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38438340

RESUMEN

Chiral nanoscale enantiomers exhibit different biological effects in living systems. However, their chirality effect on the detection sensitivity for chiral biological targets still needs to be explored. Here, we discovered that Co2+ can modulate the luminescence performance of L/D-glutathione (GSH)-modified copper nanoclusters (L/D-Cu NCs) and induce strong chiroptical activities as the asymmetric factor was enhanced 223-fold with their distribution regulating from the ultraviolet to visible region. One Co2+ coordinated with two GSH molecules that modified on the surface of Cu NCs in the way of CoN2O2. On this basis, dual-modal chiral and luminescent signals of Co2+ coordinated L/D-Cu NCs (L/D-Co-Cu NCs) were used to detect the chiral adenosine triphosphate (ATP) based on the competitive interaction between surficial GSH and ATP molecules with Co2+. The limits of detection of ATP obtained with fluorescence and circular dichroism intensity were 9.15 µM and 15.75 nM for L-Co-Cu NCs, and 5.35 µM and 4.69 nM for D-Co-Cu NCs. This demonstrated that selecting suitable chiral configurations of nanoprobes effectively enhances detection sensitivity. This study presents not only a novel method to modulate and enhance the chiroptical activity of nanomaterials but also a unique perspective of chirality effects on the detection performances for bio-targets.


Asunto(s)
Cobre , Nanoestructuras , Adenosina Trifosfato , Luminiscencia , Glutatión
14.
Neurol Sci ; 45(9): 4383-4390, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38523206

RESUMEN

OBJECTIVES: Blood-brain barrier (BBB) disruption is an important pathological change after cerebral infarction that exacerbates brain injury. We aimed to investigate and compare the predictive utility of pre-treatment BBB permeability (BBBP) and BBBP within 1 h after endovascular treatment (EVT) for hemorrhagic transformation (HT) and 90-day prognosis. METHODS: Patients underwent preoperative computed tomography perfusion (CTP) and non-contrast CT (NCCT) within 1 h after EVT. Preoperative BBBP was determined by the relative permeability surface area product (rPS) in the hypoperfusion area. Postoperative BBBP was determined by the post-EVT Alberta Stroke Program Early CT Score (Post-ASPECTS), which is based on brain parenchymal hyperdensity on the postoperative NCCT. OUTCOMES: We included 100 patients. Univariate logistic regression analysis revealed correlations of preoperative rPS with HT, poor outcomes, and death. However, these correlations were not observed in multivariate logistic regression. A Post-ASPECTS ≤7 and could independently predict poor outcomes, while Post-ASPECTS ≤6 could independently predict death and HT. The baseline National Institutes of Health Stroke Scale (NIHSS) score could independently predict poor outcomes and death but not HT. A combined model using the baseline NIHSS and Post-ASPECTS scores had better predictive performance for poor outcomes and death than baseline NIHSS score alone; however, it was not superior to the predictive performance of the Post-ASPECTS score. CONCLUSION: The preoperative rPS cannot independently predict clinical outcomes in EVT-treated patients; contrastingly, the Post-ASPECTS score could independently predict poor outcomes, death, and HT. This parameter could inform prompt postoperative treatment decisions.


Asunto(s)
Barrera Hematoencefálica , Procedimientos Endovasculares , Humanos , Masculino , Femenino , Anciano , Barrera Hematoencefálica/diagnóstico por imagen , Persona de Mediana Edad , Pronóstico , Resultado del Tratamiento , Tomografía Computarizada por Rayos X , Estudios Retrospectivos , Anciano de 80 o más Años
15.
Nanoscale ; 16(12): 6068-6077, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38433725

RESUMEN

The exciton-polaritons in a lead halide perovskite not only have great significance for macroscopic quantum effects but also possess vital potential for applications in ultralow-threshold polariton lasers, integrated photonics, slow-light devices, and quantum light sources. In this study, we have successfully demonstrated strong coupling with huge Rabi splitting of 553 meV between perovskite excitons and anapole modes in the perovskite metasurface at room temperature. This outcome is achieved by introducing anapole modes to suppress radiative losses, thereby confining light to the perovskite metasurface and subsequently hybridizing it with excitons in the same material. Our results indicate the formation of self-hybridized exciton-polaritons within the perovskite metasurface, which may pave the way towards achieving high coupling strengths that could potentially bring exciting phenomena to fruition, such as Bose-Einstein condensation as well as enabling applications such as efficient light-emitting diodes and lasers.

16.
Small ; 20(24): e2311275, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38196019

RESUMEN

Nanomaterials with biomimetic catalytic abilities have attracted significant attention. However, the stereoselectivity of natural enzymes determined by their unique configurations is difficult to imitate. In this work, a kind of chiral CuxCoyS-CuzS nanoflowers (L/D-Pen-NFs) is developed, using porous CuxCoyS nanoparticles (NPs) as stamens, CuzS sheets as petals, and chiral penicillamine as surface stabilizers. Compared to the natural laccase enzyme, L/D-Pen-NFs exhibit significant advantages in catalytic efficiency, stability against harsh environments, recyclability, and convenience in construction. Most importantly, they display high enantioselectivity toward chiral neurotransmitters, which is proved by L- and D-Pen-NFs' different catalytic efficiencies toward chiral enantiomers. L-Pen-NFs are more efficient in catalyzing the oxidation of L-epinephrine and L-dopamine compared with D-Pen-NFs. However, their catalytic efficiency in oxidizing L-norepinephrine and L-DOPA is lower than that of D-Pen-NFs. The reason for the difference in catalytic efficiency is the distinct binding affinities between CuxCoyS-CuzS nano-enantiomers and chiral molecules. This work can spur the development of chiral nanostructures with biomimetic functions.


Asunto(s)
Cobre , Catálisis , Cobre/química , Estereoisomerismo , Nanoestructuras/química , Biomimética/métodos , Oxidación-Reducción , Lacasa/química , Lacasa/metabolismo
17.
Nanomaterials (Basel) ; 14(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38251123

RESUMEN

We report ab initio molecular dynamic simulations of the organic structure-directing agent (OSDA) in the channels of SCM-14 and SCM-15 germanosilicates for models with different germanium distribution. Since OSDA was free to move inside the channels, independent of its initial orientation after the simulations in all structures the OSDA, protonated 4-pyrrolidinopyridine, is positioned almost perpendicular to the large channels of SCM-14. The structures obtained from the dynamic simulation are more stable by 157 to 331 kJ/mol than the structures obtained by initial geometry optimization. After simulations, the average distance between the N atom of the pyridine moiety of the OSDA and O from Ge-O-Ge is shorter by 0.2 Å than the same distance obtained from initial optimization. The stretching N-H frequencies in the IR spectra of the OSDA and other calculated vibrational frequencies are not characteristic of the orientation of the molecule and cannot be used to detect it.

18.
Chem Commun (Camb) ; 60(5): 554-557, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38088855

RESUMEN

It is a big challenge to retain the water and thus reduce the charge impedance for solid electrolytes used in flexible and wearable zinc ion batteries. Here, we propose novel phytic acid (PA) cross-linked polyvinyl alcohol (PVA) hydrogels as high-performanced solid electrolytes strengthened by the Hofmeister effect. In this approach, freeze-thawing followed by a salting-out procedure via anions to induce the Hofmeister effect can greatly improve the tensile strain and flexibility of the hydrogels. The PA addition dramatically enhances the ionic conductivity and increases the affinity between the electrolyte and zinc plate. Consequently, the PVA/PA hydrogels exhibit remarkable electrochemical performances with stable full-cell cycling in zinc ion storage and capability in inhibiting Zn dendrite growth.

19.
Vascul Pharmacol ; 154: 107251, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38052330

RESUMEN

BACKGROUND: Hypertension is a prevalent cardiovascular disease characterized by elevated blood pressure and increased vascular resistance. HDAC inhibitors have emerged as potential therapeutic agents due to their ability to modulate gene expression and cellular processes. YPX-C-05, a novel hydroxamic acid-based HDAC inhibitor, shows promise in its vasodilatory effects and potential targets for hypertension treatment. In this study, we aimed to elucidate the mechanisms underlying YPX-C-05's vasodilatory effects and explore its therapeutic potential in hypertension. METHODS: To determine the ex vivo vasodilatory effects of YPX-C-05, isolated aortic rings precontracted with phenylephrine were used. We assessed YPX-C-05's inhibitory effects on HDACs and its impact on histone H4 deacetylation levels in endothelial cells. Network pharmacology analysis was employed to predict putative targets of YPX-C-05 for hypertension treatment. To investigate the involvement of the PI3K/Akt/eNOS pathway, we employed enzyme-linked immunosorbent assay and to assess the levels of NO, ET-1, BH2, and BH4 in human umbilical vein endothelial cells. And we also analyzed the mRNA expression of eNOS and ET-1. Furthermore, Western blotting was conducted to quantify the phosphorylated and total Akt and eNOS levels in human umbilical vein endothelial cell lysates following treatment with YPX-C-05. In order to elucidate the vasodilatory mechanism of YPX-C-05, we employed pharmacological inhibitors for evaluation purposes. Furthermore, we evaluated the chronic antihypertensive effects of YPX-C-05 on N-omega-nitro-L-arginine-induced hypertensive mice in an in vivo model. Vascular remodeling was assessed through histological analysis. RESULTS: Our findings demonstrated that YPX-C-05 exerts significant vasodilatory effects in isolated aortic rings precontracted with phenylephrine. Furthermore, YPX-C-05 exhibited inhibitory effects on HDACs and increased histone H4 acetylation in endothelial cells. Network pharmacology analysis predicted YPX-C-05 might activate endothelial eNOS via PI3K/Akt signaling pathway. Inhibition of the PI3K/Akt/eNOS pathway attenuated the vasodilatory effects of YPX-C-05, as evidenced by reduced levels of phosphorylated Akt and eNOS in human umbilical vein endothelial cell lysates. The chronic administration of YPX-C-05 in N-omega-nitro-L-arginine-induced hypertensive mice resulted in significant antihypertensive effects. Histological analysis demonstrated a reduction in vascular remodeling, further supporting the therapeutic potential of YPX-C-05 in hypertension. CONCLUSION: This study demonstrates for the first time that the novel hydroxamic acid-based HDAC inhibitor YPX-C-05 produces significant antihypertensive and vasodilatory effects through the PI3K/Akt/eNOS pathway. Our findings support the developing prospect of YPX-C-05 as a novel antihypertensive drug.


Asunto(s)
Hipertensión , Proteínas Proto-Oncogénicas c-akt , Humanos , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Antihipertensivos/farmacología , Remodelación Vascular , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/metabolismo , Histonas/metabolismo , Histonas/farmacología , Hipertensión/tratamiento farmacológico , Hipertensión/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Arginina , Fenilefrina/metabolismo , Fenilefrina/farmacología , Óxido Nítrico Sintasa de Tipo III/metabolismo
20.
J Inflamm Res ; 16: 5989-6001, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38088941

RESUMEN

Background: Sepsis is initiated by the dysfunctional response of the host immune system to infection. Septic shock and acute lung injury (ALI) are the main etiology of death caused by sepsis. Glucocorticoids, which are commonly used in clinic to antagonize the inflammatory response of sepsis, may cause serious side effects. Isoforskolin (ISOF) from the plant Coleus forskohlii stimulates adenylyl cyclase, increases the cAMP level and inhibits inflammatory response. The aim of this study was to investigate the synergistic effect of ISOF with dexamethasone (DEX) to prevent and ameliorate septic inflammation. Methods: Lipopolysaccharide (LPS) of 30 and 5 mg/kg (iv.) was used to induce sepsis and ALI mice model respectively in vivo. BEAS-2B cells stimulated by LPS were applied as cell model in vitro. The cumulative survival of mice with LPS-induced sepsis and the histopathological changes of lungs in mice with acute lung injury were observed, and the secretion of pro-inflammatory cytokines was analyzed by ELISA. The expression of RGS2 in BEAS-2B cells was detected by immunoblotting assay and PCR. Results: In the sepsis mice model, ISOF (10 mg/kg) combined with DEX (10 mg/kg.) (ip.) pretreatment significantly increased mice survival rate from 33.3% to 58.3%, which was significantly higher than that of ISOF or DEX treated alone. In the ALI mice model, ISOF, DEX pretreatment alone and combined application attenuated pulmonary pathological changes in ALI mice. Furthermore, ISOF, DEX alone or combined administration decreased MPO, MDA, IL-6, and IL-8 levels, while significantly synergistic effects were observed in the combined treatment group compared with ISOF or DEX alone. In BEAS-2B cells, combined pretreatment with ISOF and DEX significantly decreased the expression of IL-8 and increased the expression of RGS2. Conclusion: The results indicated that ISOF in combination with DEX synergistically improves survival rate and attenuates ALI in mice model through anti-inflammatory and antioxidant effects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA